Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Take Theoretical Research on 'Nasty' Molecule to Next Level

08.12.2009
Some atoms don't always follow the rules.

Take the beryllium dimer, a seemingly simple molecule made up of two atoms that University of Delaware physicists Krzysztof Szalewicz and Konrad Patkowski and colleague Vladimír Spirko of the Academy of Sciences of the Czech Republic report on in the Dec. 4 edition of the journal Science.

Beryllium is a strong, hard, toxic metal found naturally in minerals such as emeralds and commonly used as an alloy with other metals in many applications, from the tweeters of loudspeakers for public address systems to elements of nuclear weapons.

For decades, scientists believed the two atoms that compose the beryllium dimer repelled each other. That follows a basic theory of chemistry that explains how the electrons in a molecule occupy different orbitals, says Patkowski, a postdoctoral researcher at UD who works in the Szalewicz Lab and was the lead author of the study.

However, in the 1960s, scientists discovered that instead of repelling each other, the two atoms actually bond with each other.

More than 100 theoretical papers have been published on this bonding energy, Patkowski says, but they report a wide range of predictions and the most trustworthy ones differed dramatically from the measured value.

However, in May 2009, a scientific team from Emory University reported in Science the results of an experimental study that recorded the vibrational energy of the bonding atoms for 11 levels, finally reconciling the experimental and theoretical models.

“A molecule vibrates, so the distance between atoms changes in time. A molecule can't just sit there and not vibrate,” Patkowski explains. “The more vibrational energy a molecule has, the farther its atoms stray from their equilibrium positions.”

In this latest issue of Science, the UD-led team confirms a 12th and highest vibrational level for the beryllium molecule, thanks in part to their Czech colleague Spirko's expertise in “morphing,” which enables researchers to make simple changes to the theoretical interaction energy curve to agree with experimental findings. Morphed versions of this potential energy, fitted to experimental data, closely reproduce the observed spectra.

Patkowski notes that the UD study was close to completion when the Emory team published their results.

“Their results agreed with our study, so it was really gratifying to see the previous mysterious disagreement between experimental and theoretical numbers from the past disappear. Their work showed us we were going in the right direction,” Patkowski notes.

The beryllium dimer is commonly used in benchmarking studies in experimental and theoretical physics, yet the molecule is anything but common, Patkowski says.

“It's a prototype system that is small and nasty, both for experimental studies, because of its toxicity and reactivity, and for theoretical studies, because standard quantum chemistry methods work very poorly here,” he notes.

“The interesting thing about this molecule is that basic chemistry knowledge tells us that the atoms are not going to bond, but they do -- and it's a pretty strong one. It's a nice model for developing new theories of molecular physics,” Patkowski says.

The research was funded by the National Science Foundation (U.S.) and by the Academy of Sciences of the Czech Republic and the Czech Ministry of Education, Youth and Sports.

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Researchers discover link between magnetic field strength and temperature
21.08.2018 | American Institute of Physics

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>