Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reduced the weight of optics for satellite observation by 100 times

08.08.2018

The work of Samara University scientists is published in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (IEEE) published the article of the group of scientists of Samara National Research University. It describes the work on the creation and use of ultralight diffraction optics for obtaining high-resolution images.


Scientists of Samara University Reduced the Weight of Optics for Satellite Observation of the Earth by 100 Times (Video)

Credit: Samara University

In this paper, the technology of manufacturing of a 256-layer diffraction harmonic lens and the algorithms for reconstructing the obtained images are described. This optical element, created by the research group of the Department of Supercomputers and General Informatics of Samara University, weighs only 5 grams and replaces a complex and massive system of lenses and mirrors similar to the one that is used in telephoto lenses with a focal length of 300 mm and a weight of 500 grams. "To solve the problems in the areas where there is a constant struggle for the reduction of the weight and size of the optics, such massive systems are not suitable. First of all, it concerns compact systems of Earth remote sensing set on small-sized aircrafts, i.e. UAVs, atmospheric probes and nanosatellites. Ultralight diffraction-optical systems weighing only a few grams open up new possibilities for them", - says one of the authors of the scientific article, Professor of the Department of Supercomputers and General Informatics Artem Nikonorov.

Modern heavy photo and telephoto lenses need a large number of optical elements (12 and more) for the compensation of image distortions that take place due to optical aberrations. The scientists, when using an ultralight harmonic lens, proposed to compensate for such distortions with the use of digital processing. The computational reconstruction developed by them for these purposes includes colour correction of the image and elimination of chromatic blurring using convolutional neural networks (CNN). The results of the testings conducted by the developers showed that the quality of images restored in this way is comparable to the quality of images obtained from consumer cameras and mobile phones.

The time for reconstruction of one image based on the CNN is about 1 second.

On the basis of the described approach, Samara University scientists have already proposed a technology capable of providing a resolution of 18 m for surveying the

Earth's surface from a nanosatellite. While the optical systems on the market provide a resolution of 40 m.

In addition, the use of an ultralight harmonic lens and image reconstruction technology based on the CNN enabled scientists to increase the PSNR (Peak Signal-to-Noise Ratio) to 26 dB in real images. "Five years ago obtaining a high-resolution colour image using a diffraction lens seemed a distant goal. However, the results of our studies have shown the promise of using light diffraction optics, - noted Artem Nikonorov. - The fact that our work has been published by the authoritative journal IEEE, which has a Q1 quartile in such fields as "Space Sciences" and "IT in the Earth Sciences", suggests that international experts see a great future for this direction".

In the future, the research group of Samara University is going to continue the work on overcoming strong aberrations in the images. To solve this problem, they plan to improve the technology of manufacturing ultralight lenses as well as image reconstruction methods and improve the performance of neural network reconstruction.

###

For reference

When manufacturing a 256-level diffraction harmonic lens, a photosensitive substance - resist - is applied to the surface of silica glass. Its thickness is 7 microns (for comparison, the thickness of a human hair is 40-90 microns). With the help of a laser beam a 256-level relief is drawn on the resist. An 'approximation' of an object happens with its help. The production process of one lens takes about half an hour. The compensation of distortions is provided by the digital processing of images on the basis of extremely-precise neuron networks".

Media Contact

Olga Buhner
buhner@ssau.ru
7-917-158-3348

 @smr_university

http://www.ssau.ru/ 

Olga Buhner | EurekAlert!
Further information:
https://ssau.ru/english/news/15681
http://dx.doi.org/10.1109/JSTARS.2018.2856538

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>