Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists See "Sloshing" Galaxy Cluster

31.01.2012
A Naval Research Laboratory scientist is part of a team that has recently discovered that vast clouds of hot gas are "sloshing" in Abell 2052, a galaxy cluster located about 480 million light years from Earth.

The scientists are studying the hot (30 million degree) gas using X-ray data from NASA's Chandra X-ray Observatory and optical data from the Very Large Telescope to see the galaxies.

"The X-ray images were amazing. We were able to see gas sloshing like liquid in a glass" explains NRL's Dr. Tracy Clarke. "Of course this would be one enormous glass since we see the gas sloshing over a region of nearly a million light years across!"

The Chandra data reveal the huge spiral structure in the hot gas around the outside of the image. Zooming in on the cluster reveals "cavities" or "bubbles" surrounding the central giant elliptical galaxy. The spiral began when a small cluster of galaxies collided off-center with a larger one positioned around that central galaxy.

The gravitational attraction of the smaller cluster drew the hot gas out of the central cluster toward the smaller cluster. Once the smaller cluster passed by the central cluster core, the gas movement reversed and it was pulled back toward the center of the main cluster. The hot cluster gas overshot the cluster center, creating the "sloshing" effect that is like the sloshing that occurs when a glass holding a liquid is quickly jerked sideways. In the cluster, gravity pulls back on the gas cloud, creating the spiral pattern.

For scientists, the observation of the "sloshing" motion in Abell 2052 is important for two reasons. First, the "sloshing" helps to move some of the cooler, dense gas in the center of the core farther away from the core. This cooler gas is only about 10 million degrees, as compared to the average temperature of 30 million degrees. This movement reduces the amount of cooling in the cluster core and could limit the amount of new stars being formed in the central galaxy. The "sloshing" movement in Abell 2052 also helps redistribute heavy elements like iron and oxygen, which are created out of supernova explosions. These heavy elements are an important part of the make-up of future stars and planets. The fact that Chandra's observation of Abell 2052 lasted more than a week was critical in providing scientists with the details detected in this image.

Besides the large-scale spiral feature, the Chandra observations also allowed scientists to see details in the center of the cluster related to outbursts from the supermassive black hole. The data reveal bubbles resulting from material blasted away from the black hole which are surrounded by dense, bright, cool rims. In the same way that the "sloshing" helps to reduce the cooling of the gas at the core of the cluster, the bubble activity has the same effect, limiting the growth of the galaxy and its supermassive black hole.

This research was published in the August 20, 2011 issue of The Astrophysical Journal. The authors were Elizabeth Blanton of Boston University, Boston, MA; Scott Randall of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA; Tracy Clarke of the Naval Research Laboratory, Remote Sensing Division, in Washington DC; Craig Sarazin of the University of Virginia in Charlottesville, VA; Brian McNamara of the University of Waterloo in Waterloo, Canada; Edmund Douglass of Boston University and Michael McDonald of the University of Maryland, College Park, MD.

About the U.S. Naval Research Laboratory

The U.S. Naval Research Laboratory is the Navy's full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 85 years and continues to meet the complex technological challenges of today's world. For more information, visit the NRL homepage or join the conversation on Twitter, Facebook, and YouTube.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil
http://www.nrl.navy.mil/media/news-releases/2012/scientists-see-sloshing-galaxy-cluster

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>