Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists observe first Sun-like magnetic cycle on another star

06.10.2016

A model for the Sun

An international team of scientists led by the University of Göttingen has observed a Sun-like magnetic cycle on another planet for the first time. The Sun’s magnetic field drives the Sun’s spots and flares and fuels the Solar wind – a torrent of material that streams off our star into space.


Artist’s illustration of the young Sun-like star Kappa Ceti, blotched with large starspots, which is a sign of its high level of magnetic activity.

Credit: M. Weiss/CfA

The discovery is important not only for stellar physics, but also to understand and predict how the Sun affects the Earth and our technological society through its magnetic activity. The results were published in Astronomy & Astrophysics.

With the advent of dedicated instruments known as stellar spectropolarimeters roughly ten years ago, it became possible to map the magnetic fields of nearby Sun-like stars. Using this new technology at the Bernhard Lyot Telescope in the French Pyrenees, the scientists observed the star 61 Cyg A over a period of nine years. Lying in the northern constellation of Cygnus, 61 Cyg A is somewhat smaller and less massive than the Sun, and at a distance of just over eleven light years it is one of the Sun’s nearest neighbours.

The Sun’s activity varies over the course of a 22-year long magnetic cycle, with the polarity of its magnetic field flipping every eleven years. The frequency and strength of these activities wax and wane over the course of a cycle, with two active periods interspersed with more quiet ones. All in all, the variations are relatively small and slow – a stark contrast to the great bulk of known magnetically active stars that vary dramatically in brightness, release enormous flares and display much more complex long-term variability.

Although 61 Cyg A is a little dimmer and cooler than the Sun, the scientists were able to detect changes in its activity coinciding with polarity flips over a seven-year activity cycle, for a magnetic cycle of 14 years. They observed polarity changes every seven years and an increased complexity in its magnetic field when these flips were approached.

“Our findings could contribute greatly towards creating models of how the Sun and other stars generate magnetic fields. This will enable us to gain an understanding of this important process, which is thought to be operating inside all Sun-like stars, and to help us to further understand our own Sun,” explains Sudeshna Bodo Saikia, Ph.D. student at Göttingen University and lead author of the study. A better understanding of this process and of our Sun in general will increase our ability to predict the impact of the Sun’s activities on our technology on Earth and on orbiting satellites.

The Solar wind and coronal mass ejections can indeed have a huge impact on Earth. When these flows of plasma reach Earth, they not only produce the northern and southern lights, but they can also disturb radio communication and power grids at ground level, as well as damage satellites and even threaten astronauts in Earth orbit.

Original publication: Sudeshna Boro Saikia et al. A solar-like magnetic cycle on the mature K-dwarf 61 Cygni A (HD 201091). Astronomy & Astrophysics 2016. Doi: 10.1051/0004-6361/201628262.

Contact:
Sudeshna Bodo Saikia
University of Göttingen
Faculty of Physics – Institute for Astrophysics
Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Phone +49 551 39-13286
Email: sudeshna@astro.physik.uni-goettingen.de
Web: http://www.astro.physik.uni-goettingen.de/~sudeshna

Weitere Informationen:

http://www.uni-goettingen.de/en/3240.html?cid=5448 photos

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>