Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists make 'squarest' ice crystals ever

11.07.2017

Ability to study cubic ice in the lab could aid climate change models

You won't find ice cubes like this in your freezer.


Researchers created ice crystals with a near-perfect cubic arrangement of water molecules, in order to better understand how high-altitude ice clouds interact with sunlight and the atmosphere. In this X-ray diffraction image, the ice crystals have scattered X-rays to create concentric rings, which are a fingerprint of the molecular arrangement within the crystals.

Image courtesy of The Ohio State University

An international team of scientists has set a new record for creating ice crystals that have a near-perfect cubic arrangement of water molecules--a form of ice that may exist in the coldest high-altitude clouds but is extremely hard to make on Earth.

The ability to make and study cubic ice in the laboratory could improve computer models of how clouds interact with sunlight and the atmosphere--two keys to understanding climate change, said Barbara Wyslouzil, project leader and professor of chemical and biomolecular engineering at The Ohio State University.

It could also enhance our understanding of water - one of the most important molecules for life on our planet.

Seen under a microscope, normal water ice--everything from frozen ponds, to snow, to the ice we make at home--is made of crystals with hexagonal symmetry, Wyslouzil explained. But with only a slight change in how the water molecules are arranged in ice, the crystals can take on a cubic form.

So far, researchers have used the presence of cold cubic ice clouds high above the earth's surface to explain interesting halos observed around the sun, as well as the presence of triangular ice crystals in the atmosphere. Scientists have struggled for decades to make cubic ice in the laboratory, but because the cubic form is unstable, the closest anyone has come is to make hybrid crystals that are around 70 percent cubic, 30 percent hexagonal.

In a paper published in the Journal of Physical Chemistry Letters, Wyslouzil, graduate research associate Andrew Amaya and their collaborators describe how they were able to create frozen water droplets that were nearly 80 percent cubic.

"While 80 percent might not sound 'near perfect,' most researchers no longer believe that 100 percent pure cubic ice is attainable in the lab or in nature," she said. "So the question is, how cubic can we make it with current technology? Previous experiments and computer simulations observed ice that is about 75 percent cubic, but we've exceeded that."

To make the highly cubic ice, the researchers drew nitrogen and water vapor through nozzles at supersonic speeds. When the gas expanded, it cooled and formed droplets a hundred thousand times smaller than the average raindrop. These droplets were highly supercooled, meaning that they were liquid well below the usual freezing temperature of 32 degrees Fahrenheit (0 degrees Celsius). In fact, the droplets remained liquid until about -55 degrees Fahrenheit (around -48 degrees Celsius) and then froze in about one millionth of a second.

To measure the cubicity of the ice formed in the nozzle, researchers performed X-ray diffraction experiments at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in Menlo Park, CA. There, they hit the droplets with the high-intensity X-ray laser from LCLS and recorded the diffraction pattern on an X-ray camera. They saw concentric rings at wavelengths and intensities that indicated the crystals were around 80 percent cubic.

The extremely low temperatures and rapid freezing were crucial to forming cubic ice, Wyslouzil said: "Since liquid water drops in high-altitude clouds are typically supercooled, there is a good chance for cubic ice to form there."

Exactly why it was possible to make crystals with around 80 percent cubicity is currently unknown. But, then again, exactly how water freezes on the molecular level is also unknown.

"When water freezes slowly, we can think of ice as being built from water molecules the way you build a brick wall, one brick on top of the other," said Claudiu Stan, a research associate at the Stanford PULSE Institute at SLAC and partner in the project. "But freezing in high-altitude clouds happens too fast for that to be the case--instead, freezing might be thought as starting from a disordered pile of bricks that hastily rearranges itself to form a brick wall, possibly containing defects or having an unusual arrangement. This kind of crystal-making process is so fast and complex that we need sophisticated equipment just to begin to see what is happening. Our research is motivated by the idea that in the future we can develop experiments that will let us see crystals as they form."

###

Additional co-authors on the paper were from Ohio State, SLAC, the National University of Singapore, Stockholm University, KTH Royal Institute of Technology, Brookhaven National Laboratory and the National Science Foundation BioXFEL Science and Technology Center. The research was funded by the National Science Foundation, the U.S. Department of Energy and SLAC. The use of LCLS was supported by the U.S. Department of Energy Office of Science.

Contacts:

Barbara Wyslouzil, 614-688-3583; wyslouzil.1@osu.edu

Claudiu Stan, cstan@slac.stanford.edu

Written by Pam Frost Gorder, 614-292-9475; Gorder.1@osu.edu

http://news.osu.edu 

Pam Frost Gorder | EurekAlert!

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>