Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explain unusual and effective features in perovskite

28.06.2016

An international team of scientists have described how charge-carrying particles move in perovskite

Perovskite is a material with an almost ideal structure. The majority of high-temperature superconductors are perovskite-based due to their non-ideal structure. The material can also be used to produce flexible solar batteries without rare-earth metals, which would help to reduce costs and enable large-scale manufacture.


Praseodymium atoms are shown in green, oxygen atoms in orange, and titanium atoms in purple.

Credit: MIPT

One of the authors notes the manganite-like properties of perovskites. "This material exhibits many interesting and intriguing properties, most notably giant magnetoresistance. Many manganite properties are unknown, despite the fact that manganites have been studied for decades. We tried to work out what the conduction mechanism is of one of the most common compounds - Pr1-xCaxMnO3," he says. All these features have been experimentally discovered, but the processes to explain these unique properties are unknown.

Semiconductors were discovered more than 150 years ago. Electricity was a new development at the time. It was obvious that there were isolators like rubber and glass, conductors like copper and gold, and some uncertain materials, semiconductors, which did not fit into any category. The mechanisms of semiconductors remained unknown for about a century. It was not until the 1930s that the problem was solved and the first transistor was made. Nowadays it is difficult to imagine any electronic device without transistors.

Unfortunately, it is not possible to see charge movement in a material under a microscope. This is why researchers at Terahertz Spectroscopy Laboratory decided to use indirect detection methods. To test which particles are conductive, they applied different frequency voltages and measured the relationship between frequency and induced current.

The scientists measured the frequency and temperature dependence of conductivity and permittivity in a broad frequency range (5-3000 cm-1) to cover all the bases. Wide temperature ranges - from 10 to 300 K (-263 to 27 °C) - of the samples were obtained to distinguish similar dependences of samples with different conduction mechanisms. But even this was insufficient to clarify the nature of charge carries. For this reason, researchers compared perovskites with different ratios of calcium (Ca) and praseodymium (Pr).

The group of scientists headed by Boris Gorshunov, Terahertz Spectroscopy Laboratory supervisor, (Lenar Kadyrov PhD, and laboratory scientists Elena Zhukova and Vladimir Anzin are also authors of this article) thus discovered that the charge carriers in Pr1-xCaxMnO3 perovskites are polarons. A polaron is an electron moving through the constituent atoms of a material, causing the neighboring positive charges to shift toward it and the neighboring negative charges to shift away.

The properties of perovskites are ideal for electron-phonon (phonons are vibrations in a crystal lattice) coupling, determined by the interplay between symmetry breaking interactions. The researchers established that polarons move coherently (as one unit). That is to say charge carriers behave more like uncoupled particles. The idea of coherence is used in lasers, superconductors, highly accurate distance measurements, quantum calculations etc.

Establishing how conduction occurs could help perovskite research projects and large-scale applications to progress. For example, there is already a high-efficiency perovskite-based device for separating water into oxygen and hydrogen. Perovskites can also be used as LEDs, however they are currently only able to function at the temperature of liquid nitrogen.

Media Contact

Matvey Kireev
matthew@phystech.edu
7-916-065-1016

 @phystech

https://mipt.ru/english/ 

Matvey Kireev | EurekAlert!

Further reports about: Terahertz polarons semiconductors temperature

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>