Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explain how the giant magnetoelectric effect occurs in bismuth ferrite

23.05.2016

Scientists have created a theoretical model which explains a previously little-studied phenomenon -- a giant electromagnetic effect in bismuth ferrite

A team of scientists from the Moscow Institute of Physics and Technology (MIPT), the National Research University of Electronic Technology (MIET), and the Prokhorov General Physics Institute have proposed a theoretical model that explains the unexpectedly high values of the linear magnetoelectric effect in BiFeO3 (bismuth ferrite) that have been observed in a number of experiments. The team also suggested a way of further enhancing the effect. The results of the study have been published in the journal Physical Review B.


Fig. 1. The spin cycloid structure in BiFeO3.

Credit: MIPT press-office

One particular feature of bismuth ferrite is that in bulk samples, spins of Fe3+ iron ions are arranged in the form of a cycloid (Fig. 1). This spin structure can be destroyed by a strong magnetic field or mechanical stress. Without a spin cycloid, bismuth ferrite exhibits a large linear magnetoelectric effect, and this effect was the focal point of the study.

"The theoretical description presented in the paper may be applicable to other multiferroics similar to BiFeO3. This will help in predicting the value of their magnetoelectric effect, which, in turn, will make it easier to find new and promising materials for industrial applications," says the head of MIPT's Laboratory of physics of magnetic heterostructures and spintronics for energy-saving information technologies, Prof. Anatoly Zvezdin.

Multiferroics and the magneto electric effect

Multiferroics are materials that simultaneously exhibit different ferroic orders, including magnetic, ferroelectric and/or ferroelastic. If there is an interaction between electric and magnetic subsystems in a material, a magnetoelectric (ME) effect may occur.

The magnetoelectric effect is when electric polarization occurs under the influence of an external magnetic field and magnetization occurs under the influence of an electric field. This allows an electric field to be used to control the magnetic properties of a material and a magnetic field to be used to control the electric properties. If the value of the ME effect is high (dozens or hundreds of times higher than normal), it is called a giant ME effect.

The main use of the magnetoelectric effect is in variable and static magnetic field sensors. These sensors are used in navigation systems, electric motors, and also in vehicle ignition systems. Compared to similar devices based on the Hall effect or magnetoresistance, sensors based on the ME effect are more sensitive (according to research, up to one million times more sensitive) and they are also relatively cheap to manufacture.

The ME effect offers exciting possibilities for the use of multiferroics in new types of magnetic memory, e.g. ROM - read only memory. The ME effect could also potentially be used to create high-precision equipment for working with radiation in the microwave range, and to wirelessly transmit power to miniaturized electronic devices.

Bismuth ferrite

The subject of the study was bismuth ferrite (BiFeO3) - a highly promising multiferroic that is very promising in terms of its practical applications. It is planned to be used to create ultra energy-efficient magnetoelectric memory.

In addition, bismuth ferrite exhibits a magnetoelectric effect at room temperature, while in most other magnetoelectrics an ME effect of this magnitude is only observed at extremely low temperatures (below -160 degrees Celsius). Bismuth ferrite is an antiferromagnetic, which means that the magnetic moments of its magnetic sublattices (structures formed by atoms with the same parallel spins) cancel each other out, and the total magnetization of the material is close to zero. However, the spatial arrangement of the spins forms the same cycloidal spin structure (Fig. 1).

In the 1980s it was thought that this multiferroic exhibited only a quadratic magnetoelectric effect (i.e. polarization is quadratically proportional to the applied magnetic field). The fact that the linear magnetoelectric effect "went unnoticed" for a long time had to do with the spin cycloid (Fig. 1): due to the spin cycloid structure, certain characteristics, such as magnetization and the magnetoelectric effect "average out" to zero. However, when bismuth ferrite is placed in a strong magnetic field (greater than a certain critical value), the structure is destroyed and this is accompanied by the emergence of a linear ME effect (when polarization is linearly proportional to the applied field).

Early experiments indicated a low value of the linear magnetoelectric effect in bismuth ferrite (almost one thousand times lower than the actual value), however later experimental studies revealed a large ME effect and it was also demonstrated that by using it in layered structures, record values of the magnetoelectric effect can be achieved.

The authors of the paper developed a theoretical justification for the occurrence of the linear ME effect based on the Ginzburg-Landau theory and explained the previously large experimental value of the effect. As part of their theory, the researchers also showed that the ME effect could be enhanced in the presence of an electrostatic field.

Media Contact

Sergey Divakov
divakov@phystech.edu
7-925-834-0978

 @phystech

https://mipt.ru/english/ 

Sergey Divakov | EurekAlert!

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>