Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new nursery for superpowered photons

04.10.2018

One of the weirdest objects in the Milky Way just got weirder. Scientists have discovered a new source of the highest-energy photons in the cosmos: a strange system known as a microquasar, located in our neck of the galaxy a neighborly 15,000 light years from Earth. The discovery could shed light on some of the biggest, baddest phenomena in the known universe.

Their findings appear in the Oct. 4, 2018, issue of Nature. Among the coauthors are Petra Huentemeyer, a professor of physics; Henrike Fleischhack, a postdoctoral research associate; and PhD candidates Chad Brisbois and Binita Hona, all of Michigan Technological University.


Looking at quasars is like staring into a flashlight. But not so with microquasar SS 433. Its powerful jets of galactic material aim away from Earth, making it easier to study. Physics prof Petra Huentemeyer works with the High-Altitude Water Cherenkov Gamma-Ray (HAWC) Observatory in Mexico to observe gamma rays emitted by the system.

Credit: HAWC

The gamma rays beaming from this microquasar, known as SS 433, are among the brawniest photons ever observed--about 25 trillion times more energetic than visible light--and were detected at the High-Altitude Water Cherenkov Gamma-Ray (HAWC) Observatory, in Mexico.

Such photons are born only in the most extreme environments, including quasars, the massive black holes at the centers of galaxies billions of light years away. But if you wanted to find a gamma-ray birthplace closer to home, microquasars might be one of the first places you'd look.

Microquasars behave like quasars, but in miniature. Quasars suck up dust and gas, while astronomers believe that SS 433 contains a black hole that sucks up stuff from a nearby companion star. They both blast out powerful jets of material in opposite directions. SS 433's jets extend over 130 light years into space. To put that into perspective, our entire solar system is not quite two light years across.

Scientists have been studying SS 433 since the 1980s and have already detected electromagnetic radiation in the form of X-rays and radio waves coming from the ends of its jets. But they had not found any high-energy gamma rays until now and HAWC's technology made it possible.

"The HAWC Observatory is the most sensitive instrument for photons at these very high energies, and it did not begin collecting data until 2015," Huentemeyer says, the HAWC science coordinator.

The new evidence strongly suggests that the powerful gamma rays were produced at the ends of the jets and not another source nearby.

"SS 433 is located in the same region of the sky as other bright sources that also emit gamma rays," Hao Zhou says, galactic science coordinator of HAWC and a lead author on the Nature paper. "With its wide field of view, HAWC is uniquely capable of separating the gamma-ray emission due to SS 433 from other background photons." Zhou is a former doctoral student of Huentemeyer and a 2015 Michigan Tech PhD graduate now at Los Alamos National Laboratory.

In addition, the data show that the high-energy gamma rays were generated by electrons colliding with background microwave radiation left over from the Big Bang. That means that electrons in the SS 433 jets attain energies that are about 1,000 times higher than those achieved by the most powerful earthbound particle accelerators, such as the city-sized Large Hadron Collider, in Switzerland. This is a new mechanism for generating high-energy gamma rays in this type of system and is different than what scientists have previously observed.

The finding is also somewhat mysterious. "These electrons are some of the highest-energy particles in our galaxy, and it's hard to explain how something that small got so much energy," Huentemeyer says. "However, the electromagnetic radiation emitted by SS 433 over a broad energy range is consistent with a single population of electrons."

Scientists hope that studying messengers from this microquasar may offer a glimpse into the secrets of their larger cousins. Quasars are millions of times bigger than the sun and the brightest known objects in the universe. Most have been found billions of light years away, and because it takes light time to travel, studying them is like going back in a time machine; we see the object as it was billions of years ago.

Because they are so far away, most of the quasars detected by telescopes have their jets aimed at Earth, so observing them is like looking directly into a flashlight. In contrast, SS 433's jets are oriented sideways, pointing away from Earth, which makes them easier to study.

"The new findings improve our understanding of particle acceleration in the jets of microquasars," Zhou says. "They may also shed light on the physics underlying the much larger and more powerful extragalactic jets in quasars."

Media Contact

Allison Mills
awmills@mtu.edu
906-487-2343

 @michigantech

http://www.mtu.edu 

Allison Mills | EurekAlert!
Further information:
http://www.mtu.edu/news/stories/2018/october/scientists-discover-new-nursery-for-superpowered-photons.html
http://dx.doi.org/10.1038/s41586-018-0565-5

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>