Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist from the University of Stuttgart reveal switching mechanism of plasmonic pixels based on magnesium

11.05.2020

Future display technologies such as virtual and augmented reality require higher pixel resolutions and optical contrast. However, the potential of state-of-the-art displays is limited by the individual pixel size to achieve necessary resolution. Researchers at the University of Stuttgart have now succeeded to observe switching processes at previously unattained nanometer resolution. It opens the door towards new and innovative ultra-high-resolution displays of the future. The journal Science Advances reports their groundbreaking work in its issue of May 08, 2020.

The size of pixels in state-of-the-art switchable optical devices is intrinsically limited by the fabrication of micrometer-sized transistors and spatial light modulators. To further decrease their size, several approaches are currently under debate and investigated in research labs all over the world.


In-situ Dynamik der Magnesiumhydrid-Bildung in Magnesium mit Nanometer-Auflösung, gemessen mit streuungssensitiver optischer Raster-Nahfeld Mikroskopie.

Photo: Universität Stuttgart / PI 4


Visualization of the topography of magnesium with nanometer resolution covered with an optical scattering phase map showing hydrogenated and unhydrogenated areas.

Photo: University of Stuttgart / PI 4

One promising route can be found in the field of nanoplasmonics. A plasmonic nanoparticle typically has sizes of only several tens of nanometers and can focus light into sub-wavelength dimensions with an extreme localization of electro-magnetic fields.

By adjusting the size of such particles, their color appearance can be shifted through the entire visible spectral range. In combination with phase-transition materials their optical properties and their appearance can be tuned, colors can be turned on and off, and one can realize switchable colored plasmonic pixels with nanometers size.

One promising material for this purpose is magnesium. The well-known metal can, under external stimulus, hydrogenate to a dielectric insulator with an extreme optical material contrast. This makes it an ideal candidate for optically active and switchable systems such as dynamic holography, plasmonic color displays, or switchable metamaterials.

So far, the optical switching from metallic magnesium to dielectric magnesium hydride with hydrogen is strongly limited by intrinsic material factors and obstacles such as the volume expansion of the material, poor cyclability, and limited diffusion coefficients.

Switching processes at previously unattained nanometer Resolution

Researchers from the 4th Physics Institute at the University of Stuttgart have succeeded for the first time to image and watch the switching process of this smart material with the required nanometer resolution to understand and analyze the influence of nanoscale morphology on the hydrogenation.

In his experiment, Julian Karst from the group of Harald Giessen uses free-standing magnesium to image in-situ its nanoscale optical and morphological properties. The measurements reveal an extreme influence of morphology on the nanoscale optical switching mechanism and highlight the possibility for significant future improvements of the optical switching performance.

Towards 3D holographic Virtual Reality

Harald Giessen believes that their published work will help in the future to develop, design, and analyze high-performance pixelated smart material optical devices with nanometer-sized pixels.

Furthermore, as magnesium is also a very promising candidate for hydrogen storage, he believes that the results on the diffusion processes on the nanometer scale will aid the improvement of the hydrogen storage efficiency. It might pave the way to realize 3D holographic virtual reality glasses in a few years.

Wissenschaftliche Ansprechpartner:

Prof. Harald Giessen, Julian Karst, University of Stuttgart, 4th Physics Institute, Phone +49 711 685-65111, E-Mail giessen@pi4.uni-stuttgart.de

Originalpublikation:

J. Karst, F. Sterl, H. Linnenbank, T. Weiss, M. Hentschel, H. Giessen: Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale, Sci. Adv. 6, eaaz0566 (2020). DOI: 10.1126/sciadv.aaz0566, https://advances.sciencemag.org/content/6/19/eaaz0566

Weitere Informationen:

https://www.pi4.uni-stuttgart.de/img/news/news_2020/2020-05-08_High_Resolution_D... (Movie)

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
https://www.uni-stuttgart.de/en/university/news/press-release/Towards-Ultra-High-Resolution-Displays-00001/

More articles from Physics and Astronomy:

nachricht Atoms at the photo shoot
03.08.2020 | Humboldt-Universität zu Berlin

nachricht Collisions in the solar system: Bayreuth researchers explain the origins of stony-iron meteorites
03.08.2020 | Universität Bayreuth

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Novel approach improves graphene-based supercapacitors

03.08.2020 | Information Technology

Germany-wide rainfall measurements by utilizing the mobile network

03.08.2020 | Information Technology

Drug discovery: First rational strategy to find molecular glue degraders

03.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>