Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientist from the University of Stuttgart reveal switching mechanism of plasmonic pixels based on magnesium


Future display technologies such as virtual and augmented reality require higher pixel resolutions and optical contrast. However, the potential of state-of-the-art displays is limited by the individual pixel size to achieve necessary resolution. Researchers at the University of Stuttgart have now succeeded to observe switching processes at previously unattained nanometer resolution. It opens the door towards new and innovative ultra-high-resolution displays of the future. The journal Science Advances reports their groundbreaking work in its issue of May 08, 2020.

The size of pixels in state-of-the-art switchable optical devices is intrinsically limited by the fabrication of micrometer-sized transistors and spatial light modulators. To further decrease their size, several approaches are currently under debate and investigated in research labs all over the world.

In-situ Dynamik der Magnesiumhydrid-Bildung in Magnesium mit Nanometer-Auflösung, gemessen mit streuungssensitiver optischer Raster-Nahfeld Mikroskopie.

Photo: Universität Stuttgart / PI 4

Visualization of the topography of magnesium with nanometer resolution covered with an optical scattering phase map showing hydrogenated and unhydrogenated areas.

Photo: University of Stuttgart / PI 4

One promising route can be found in the field of nanoplasmonics. A plasmonic nanoparticle typically has sizes of only several tens of nanometers and can focus light into sub-wavelength dimensions with an extreme localization of electro-magnetic fields.

By adjusting the size of such particles, their color appearance can be shifted through the entire visible spectral range. In combination with phase-transition materials their optical properties and their appearance can be tuned, colors can be turned on and off, and one can realize switchable colored plasmonic pixels with nanometers size.

One promising material for this purpose is magnesium. The well-known metal can, under external stimulus, hydrogenate to a dielectric insulator with an extreme optical material contrast. This makes it an ideal candidate for optically active and switchable systems such as dynamic holography, plasmonic color displays, or switchable metamaterials.

So far, the optical switching from metallic magnesium to dielectric magnesium hydride with hydrogen is strongly limited by intrinsic material factors and obstacles such as the volume expansion of the material, poor cyclability, and limited diffusion coefficients.

Switching processes at previously unattained nanometer Resolution

Researchers from the 4th Physics Institute at the University of Stuttgart have succeeded for the first time to image and watch the switching process of this smart material with the required nanometer resolution to understand and analyze the influence of nanoscale morphology on the hydrogenation.

In his experiment, Julian Karst from the group of Harald Giessen uses free-standing magnesium to image in-situ its nanoscale optical and morphological properties. The measurements reveal an extreme influence of morphology on the nanoscale optical switching mechanism and highlight the possibility for significant future improvements of the optical switching performance.

Towards 3D holographic Virtual Reality

Harald Giessen believes that their published work will help in the future to develop, design, and analyze high-performance pixelated smart material optical devices with nanometer-sized pixels.

Furthermore, as magnesium is also a very promising candidate for hydrogen storage, he believes that the results on the diffusion processes on the nanometer scale will aid the improvement of the hydrogen storage efficiency. It might pave the way to realize 3D holographic virtual reality glasses in a few years.

Wissenschaftliche Ansprechpartner:

Prof. Harald Giessen, Julian Karst, University of Stuttgart, 4th Physics Institute, Phone +49 711 685-65111, E-Mail


J. Karst, F. Sterl, H. Linnenbank, T. Weiss, M. Hentschel, H. Giessen: Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale, Sci. Adv. 6, eaaz0566 (2020). DOI: 10.1126/sciadv.aaz0566,

Weitere Informationen: (Movie)

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:

More articles from Physics and Astronomy:

nachricht FAST detects neutral hydrogen emission from extragalactic galaxies for the first time
02.07.2020 | Chinese Academy of Sciences Headquarters

nachricht First exposed planetary core discovered
01.07.2020 | Universität Bern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

Latest News

The lightest electromagnetic shielding material in the world

02.07.2020 | Materials Sciences

Spintronics: Faster data processing through ultrashort electric pulses

02.07.2020 | Information Technology

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Science & Research
Overview of more VideoLinks >>>