Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Schoolteacher Discovers ‘Cosmic Ghost’

07.08.2008
A Dutch schoolteacher has discovered a mysterious and unique astronomical object through the Galaxy Zoo project, which enables members of the public to take part in astronomy research online.

Hanny van Arkel, a primary schoolteacher from the Netherlands, came across the image of a strange gaseous object with a hole in the center that has been described as a “cosmic ghost” while using the http://www.galaxyzoo.org Web site to classify images of galaxies.

She posted about the image – which quickly became known as Hanny’s ‘Voorwerp’ after the Dutch for 'object’ – on the Galaxy Zoo forum and the astronomers who run the site began to investigate. They soon realized the potential significance of what they think is a new class of astronomical object and will now use the Hubble Space Telescope to get a closer look at ‘Hanny’s Voorwerp.’

“At first we thought it was a distant galaxy,” said Dr. Chris Lintott of Oxford University, a galaxyzoo.org team member, “but we realised there were no stars in it so that it must be a cloud of gas.” What was particularly puzzling to astronomers was that the gas was so hot – more than 10,000 degrees Celsius – when there were no stars in the vicinity to heat it up.

“We now think that what we’re looking at is light from a quasar – the bright, stormy centre of a distant galaxy powered by a supermassive black hole,” said Lintott. “The quasar itself is no longer visible to us, but its light continues to travel through space and the Voorwerp is a massive ‘light echo’ produced as this light strikes the gas.”

“This discovery really shows how citizen science has come of age in the Internet world,” said Dr. William “Bill” Keel, professor of astronomy at The University of Alabama, and a galaxyzoo.org team member.

“Hanny’s attentiveness alerted us not only to a peculiar object, but to a window into the cosmic past which might have eluded us for a long time otherwise,” Keel said. “Trying to understand the processes operating here has proven to be a fascinating challenge, involving a whole range of astrophysical techniques and instruments around the world and beyond. This has also been some of the most rewarding astronomy I’ve done in years!”

Keel is the principal investigator on the Hubble approved project to look more closely at the object.

The black hole at the center of the galaxy, IC 2497, is now ‘turned off’ – which is why the quasar has gone dim – but around 100,000 years ago the quasar was bright enough to have been visible from the Earth through a small, inexpensive telescope.

“From the point of view of the Voorwerp the galaxy looks as bright as it would have done before the black hole turned off – it’s this light echo that has been ‘frozen in time’ for us to observe,” Lintott said. “It’s rather like examining the scene of a crime where, although we can’t see them, we know the culprit must be lurking somewhere nearby in the shadows.”

“IC 2497 is so close that if the quasar was still shining today, on a good night you could probably see it with a small telescope,” said galaxyzoo.org team member Kevin Schawinski of Yale University. “The nearest active quasar, called 3C 273, is 1.7 billion light years further away.”

Smaller light echoes have been noted around supernovae before but never anything of the scale and shape of the Voorwerp. As yet nobody has a sensible explanation for the hole that runs through its center.

“It’s amazing to think that this object has been sitting in the archives for decades and that amateur volunteers can help by spotting things like this online,” said Hanny van Arkel. “It was a fantastic present to find out on my 25th birthday that we will get observational time on the Hubble Space Telescope to follow-up this discovery.”

Dr. Dan Smith of Liverpool John Moores University and Peter Herbert of the University of Hertfordshire were observing using the Isaac Newton Group of telescopes in La Palma, Spain, when word of the discovery filtered through.

“When we got the news about Hanny's Voorwerp we were intrigued to find out what it was, and, fortunately, we were able to slew the telescopes round and get some great images and spectra to study it,” said Smith. “It was only later that we heard the story about how it had been discovered; it's inspirational that Hanny picked out this object from Galaxy Zoo in her spare time and nobody had ever seen anything like it before.”

During the last year, 50 million classifications of galaxies have been submitted on one million objects at www.galaxyzoo.org by more than 150,000 armchair astronomers from all over the world.

The next stage of Galaxy Zoo will ask volunteers for more detailed classifications, making it easier to identify more unusual objects such as Hanny's Voorwerp.

Notes to editors
• The Galaxy Zoo team includes scientists from the University of Oxford, the University of Portsmouth and Johns Hopkins University, and Fingerprint Digital Media of Belfast. Key contributors to this stage of the project were William “Bill” Keel from The University of Alabama, Dan Smith (Liverpool John Moores University) Peter Herbert and Matt Jarvis (University of Hertfordshire) and Nicola Bennert (University of California Riverside).
• Details of the discovery are included in a paper submitted by the team to the Monthly Notices of the Royal Astronomical Society.
• Images related to the project can be viewed at http://www.ox.ac.uk/media/news_releases_for_journalists/gzvimages.html

• The new digital images used in Galaxy Zoo were taken using the robotic Sloan Digital Sky Survey telescope in New Mexico. For more on the Sloan Digital Sky Survey visit http://www.sdss.org. For full details of those involved go to http://www.sdss.org/collaboration/credits.html

Pete Wilton | Newswise Science News
Further information:
http://www.galaxyzoo.org
http://uanews.ua.edu/

More articles from Physics and Astronomy:

nachricht 4D imaging with liquid crystal microlenses
20.11.2019 | American Chemical Society

nachricht Outback telescope captures Milky Way center, discovers remnants of dead stars
20.11.2019 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>