Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scaling silicon quantum photonics technology

09.03.2018

The realisation of controllable large quantum devices is key for the development of quantum technologies.

Now a team of researchers from the University of Bristol, Peking University, Technical University of Denmark, ICFO Spain, PAS, University of Copenhagen and Dr. Jordi Tura from the Theory Division at the Max Planck Institute of Quantum Optics has developed a large-scale integrated silicon-photonics quantum circuit for the precise and general control of multidimensional entanglement.


A large-scale integrated silicon-photonic quantum circuit for controlling multidimensional entanglement.

Graphic: from the original publication

Integrated Quantum Photonics allows the routing and control of single particles of light with intrinsically high stability and precision, however to date it has been limited to small-scale demonstrations in which only a small number of components are integrated on a chip. It is thus in high demand to scale up the integrated photonic circuits and increase the complexity and computational power of modern quantum information processing technologies that would enable many revolutionary applications.

An international team of researchers led by scientists from the Uni. of Bristol’s Quantum Engineering Technology Labs has demonstrated the first ever large-scale integrated quantum photonic circuit, which can generate, control and analyze high-dimensional entanglement with unprecedented high precision and generality. The quantum chip was realised using a scalable silicon photonics technology, similar to today’s electronic circuits, which would provide a path to manufacture massive components for the realization of a optical quantum computer.

The work, in collaboration with Peking University, Technical University of Denmark (DTU), Institut de Ciències Fotòniques (ICFO), Polish Academy of Sciences (PAS), University of Copenhagen and the Theory Division at the Max Planck Institute of Quantum Optics (MPQ), has been published online by the journal Sience (8 March 2018).

Coherently and precisely controlling large quantum devices and complex multidimensional entanglement systems has been a challenging task owing to the complex interactions of correlated particles in large quantum systems. Significant progress towards large-scale quantum systems has been recently reported in a variety of platforms including photons, superconductors, ions, dots and defects. In particular, photonics represent a system able to naturally encode and process multidimensional qudit states in photon’s different degrees of freedom.

In this work, a programmable bipartite path-encoded multidimensional entangled system with dimension up to 15×15 is demonstrated, where each photon exists over 15 optical paths at the same time and the two photons are entangled with each other there. This multidimensional entanglement system is achieved by scaling up the silicon-photonics quantum circuits via a single chip integration of 550 optical components including 16 identical photon-pair sources, 93 optical phase-shifters, 122 beam-splitters, among other optical elements.

Lead author, Dr Jianwei Wang, said: “It is the maturity of today’s silicon-photonics that allows us to scale up the technology and reach a large-scale integration of quantum circuits. This is the most beautiful thing of quantum photonics on silicon. As a result, our quantum chip allows us to, for the first time, reach the unprecedented high precision and universality of controlling multidimensional entanglement, a key factor in many quantum information tasks of computing and communication.”

Dr Yunhong Ding from DTU added: “New technologies always enable new applications. The capabilities of our integrated technology allow us to observe high-quality multidimensional quantum correlations including generalized Bell and EPR steering violations, and also to implement experimentally unexplored multidimensional quantum protocols: multidimensional randomness expansion and state self-testing.”

Dr Jordi Tura from MPQ stated: "The degree of precision and control achieved with this technology has allowed us to test it against some of the most stringent quantum information protocols, such as self-testing or randomness expansion, which are possible only under very idealized experimental conditions."

Professor Mark Thompson, the PI of the Bristol team, said: "The photonic circuits on silicon, the same material as used in our electronic circuits, allow the processing of information carried by a single particle of light. This silicon quantum photonics technologies are allowing us to scale up quantum devices and systems in an incredibly rapid speed, and in near future it would reach an integration of tens of thousands of elements on a single chip that can promise numerous quantum applications.”

Original publication:

J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mancinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q Gong, A. Acin, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson
Multidimensional quantum entanglement with large-scale integrated optics
Science 08 Mar 2018: eaar7053, DOI: 10.1126/science.aar7053

Contact:

Dr. Jordi Tura i Brugués
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -346
E-Mail: jordi.tura@mpq.mpg.de

Prof. Dr. J. Ignacio Cirac
Honorarprofessor TU München und
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 705
E-Mail: ignacio.cirac@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Statistical inference to mimic the operating manner of highly-experienced crystallographer
18.09.2019 | Japan Science and Technology Agency

nachricht Scientists create fully electronic 2-dimensional spin transistors
18.09.2019 | University of Groningen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>