Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When scaling the quantum slopes, veer for the straight path

25.10.2013
Like any task, there is an easy and a hard way to control atoms and molecules as quantum systems, which are driven by tailored radiation fields.

More efficient methods for manipulating quantum systems could help scientists realize the next generation of technology by harnessing atoms and molecules to create small but incredibly powerful devices such as molecular electronics or quantum computers.


Princeton University researchers found that the “landscape” for quantum control (above) — a representation of quantum mechanics that allows the dynamics of atoms and molecules to be manipulated — can be unexpectedly simple, which could help scientists realize the next generation of technology by harnessing atoms and molecules to create small but incredibly powerful devices. Scientists achieve quantum control by finding the ideal radiation field (top of the graphic) that leads to the desired response from the system. Like a mountain hiker, a scientist can take a difficult, twisting path that requires frequent stops to evaluate the next step (right path). Or, they can opt for a straighter trail that cuts directly to the summit (left path). The researchers provide in their paper an algorithm that scientists can use to identify the starting point of the straight path to their desired quantum field. (Image courtesy of Arun Nanduri)

Of course, controlling quantum systems is as painstaking as it sounds, and requires scientists to discover the ideal radiation field that leads to the desired response from the system. Scientists know that reaching that state of quantum nirvana can be a long and expensive slog, but Princeton University researchers have found that the process might be more straightforward than previously thought.

The researchers report in the journal Physical Review A that quantum-control “landscapes” — the path of a system’s response from the initial field to the final desired field — appears to be unexpectedly simple. Although still a mountain of a task, finding a good control radiation field turns out to be very much like climbing a mountain, and scientists need only choose the right path. Like a hiker, a scientist can take a difficult, twisting path that requires frequent stops to evaluate which step to take next. Or, as the Princeton researchers show, they can opt for a straighter trail that cuts directly to the summit.

The researchers observe in their paper that these fast tracks toward the desired control field actually exist, and are scattered all over the landscape. They provide an algorithm that scientists can use to identify the starting point of the straight path to their desired quantum field.

The existence of nearly straight paths to reach the best quantum control was surprising because the landscapes were assumed to be serpentine, explained first author Arun Nanduri, who received his bachelor’s degree in physics from Princeton in 2013 and is working in the laboratory of Herschel Rabitz, Princeton’s Charles Phelps Smyth ’16 *17 Professor of Chemistry.

“We found that not only can you always climb to the top, but you can climb along a simple path to the top,” Nanduri said. “If we could consistently identify where these paths are located, a scientist could efficiently climb the landscape. Looking around for the next good step along an unknown path takes great effort. However, starting along a straight path requires you to look around once, and you can keep walking forward with your eyes closed, as it were.”

Following a straighter path could be a far more efficient way of achieving control of atoms and molecules for a host of applications, including manipulating chemical reactions and operating quantum computers, Nanduri said. The source of much scientific excitement, quantum computers would use “qubits” that can be entangled to potentially give them enormous storage and computational capacities far beyond the capabilities of today’s digital computers.

If the Princeton research helps scientists quickly and easily find the control fields they need, it could also allow them to carry out improved measurements of quantum systems and design new ones, Nanduri said.

“We don’t know if our discovery will directly lead to futuristic quantum devices, but this finding should spur renewed research,” Nanduri said. “If straight paths to good quantum control solutions can be routinely found, it would be remarkable.”

Nanduri, Arun, Ashley Donovan, Tak-San Ho, Herschel Rabitz. 2013. Exploring quantum control landscape structure. Physical Review A. Article published: Sept. 30, 2013. DOI: 10.1103/PhysRevA.88.033425

The work was funded by the Program in Plasma Science and Technology at Princeton University, the Army Research Office, and the U.S. Department of Energy.

Morgan Kelly | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Physics and Astronomy:

nachricht New type of low-energy nanolaser that shines in all directions
18.12.2018 | Eindhoven University of Technology

nachricht NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate
18.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New megalibrary approach proves useful for the rapid discovery of new materials

19.12.2018 | Materials Sciences

Artificial intelligence meets materials science

19.12.2018 | Materials Sciences

Gut microbiome regulates the intestinal immune system, researchers find

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>