Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scaling up gyroscopes: From navigation to measuring the Earth's rotation

07.05.2013
Accurately sensing rotation is important to a variety of technologies, from today's smartphones to navigational instruments that help keep submarines, planes, and satellites on course.

In a paper accepted for publication in the American Institute of Physics' journal Review of Scientific Instruments, researchers from the Technical University of Munich and New Zealand's University of Canterbury discuss what are called "large ring laser gyroscopes" that are six orders of magnitude more sensitive than gyroscopes commercially available.

In part, the increased sensitivity comes from the scaled-up size – the largest of these gyroscopes encloses an area of 834 square meters – meaning these instruments are no longer compatible with navigation applications. In addition, a very involved series of corrections must be made when using these instruments to account for a variety of factors, including the gravitational attraction of the moon.

According to the researchers, however, the progress in these devices has made possible entirely new applications in geodesy, geophysics, seismology, and testing theories in fundamental physics such as the effects of general relativity.

Ring laser gyroscopes rely on laser beams propagating in opposite directions along the same closed loop or "ring." The beams interfere with one another forming a stable pattern, but that pattern shifts in direct proportion to the rotation rate of the whole laser-ring system (called the "Sagnac effect").

Large ring laser gyroscopes are attached to the Earth's crust so that a shift in that pattern (seen as an observed beat note in an actively lasing device) is directly proportional to the rotation rate of the Earth. Perturbations in that rotation rate capture the momentum exchange between the atmosphere, hydrosphere, and lithosphere, and so large ring laser gyroscopes could be used to indirectly monitor the combined effects of variations in global air and water currents, for example.

They may also be used both to supplement and improve calculations currently made with Very Long Baseline Interferometry (VLBI) techniques for measuring the orientation of the instantaneous rotation axis of the Earth and the length of day. Additionally, changes in the ring's orientation also shifts the beat note of the interferometer, making the large ring laser gyroscope useful for detecting tilts in the Earth's crust, which current seismometers cannot distinguish from horizontal acceleration.

Article: "Large Ring Lasers for Rotation Sensing" is accepted for publication in the journal Review of Scientific Instruments.

Link: http://rsi.aip.org/resource/1/rsinak/v84/i4/p041101_s1

Authors: Karl Ulrich Schreiber (1, 2), Jon-Paul R. Wells (2)
(1) Technical University of Munich (2) University of Canterbury

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>