Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia Z-Machine Results Challenge Astrophysical Models of the Universe

21.03.2012
Ice giant planets have more water volume than formerly estimated, Sandia Labs Z accelerator tests indicate

In a challenge to current astrophysical models of the universe, researchers at Sandia National Laboratories Z machine and the University of Rostock in Germany have found that current estimates of ice-giant planetary interiors overstate water’s compressibility by as much as 30 percent.

The work was reported in the paper “Probing the Interior of the Ice Giants” in the Feb. 27 Physical Review Letters.

“Our results question science’s understanding of the internal structure of these planets,” said Sandia lead author Marcus Knudson, “and should require revisiting essentially all the modeling of ice giants within and outside our solar system.”

An accurate estimate of water’s shrinking volume under the huge gravitational pressures of large planets is essential to astrophysicists trying to model the evolution of the universe. They need to assume how much space is taken up by water trapped under high density and pressure, deep inside a planet, to calculate how much is needed of other elements to flesh out the planet’s astronomical image.

To come up with the composition of the so-called ice-giants Neptune and Uranus, as well as any of the ice-giant exoplanets being discovered in distant star systems, astrophysicists begin with the orbit, age, radius and mass of each planet. Then, using equations that describe the behavior of elements as the forming planet cooled, they calculate what light and heavy elements might have contributed to its evolution to end up with the current celestial object.

But if estimates of water volume are off-target, then so is everything else.

The measurements — 10 times more accurate than any previously reported — at Sandia’s Z accelerator agree with results from a modern simulation effort that uses the quantum mechanics of Schrödinger’s wave equation — the fundamental equation of wave mechanics — to predict the behavior of water under extreme pressure and density.

The model, developed through a University of Rostock and Sandia collaboration, is called “First Principles Modeling” because it contains no tuning parameters.

“You’re solving Schrödinger’s equation from a quantum mechanical perspective with hydrogen and oxygen as input; there aren’t any knobs for finagling the result you want or expect,” Knudson said.

The model’s results are quite different from earlier chemical pictures of water’s behavior under pressure, but agree quite well with the Z machine’s test results, said Knudson. These results were achieved by using Z’s magnetic fields to shoot tiny plates 40 times faster than a rifle bullet into a water-sample target a few millimeters away. The impact of each plate into the target created a huge shock wave that compressed the water to roughly one-fourth its original volume, momentarily creating conditions similar to those in the interior of the ice giants.

Sub-nanosecond observations captured the behavior of water under pressures and densities that occur somewhere between the surface and core of ice giants.

“We took advantage of recent, more precise methods to measure the speed of the shock wave moving through the water sample by measuring the Doppler shift of laser light reflected from the moving shock front, to 0.1 percent accuracy,” said Knudson.

The re-shocked state of water was also determined by observing its behavior as the shock wave reflected back into the water from a quartz rear window (its characteristics also determined) in the target. These results provided a direct test of the First Principles model along a thermodynamic path that mimics the path one would follow if one could bore deep into a planet’s interior.

Multiple experiments were performed, providing a series of results at increasing pressures to create an accurate equation of state. Such equations link changes in pressures with changes in temperatures and volumes.

Z can create more pressure — up to 20 megabars — than at Earth’s core (roughly 3.5 megabars), and millions of times Earth’s atmospheric pressure. The Z projectiles, called flyer plates, achieve velocities from 12 to 27 kilometers a second, or up to 60,000 mph. The pressure at the center of Neptune is roughly 8 megabars.

Water at Z’s ice-giant pressures also was found to have reflectivity like that of a weak metal, raising the possibility that water’s charged molecular fragments might be capable of generating a magnetic field. This could help explain certain puzzling aspects of the magnetic fields around Neptune and Uranus.

“Reducing uncertainty on the composition of planetary systems by precisely measuring the equation of state of water at extreme conditions can only help us understand how these systems formed,” Knudson said.

These experimental techniques also are used at Z to study materials of critical importance to the nuclear weapons program. In addition to producing the largest amount of X-rays on Earth when firing, the huge pressures generated by Z make it useful to astrophysicists seeking data similar to that produced by black holes and neutron stars.

Also listed as paper authors are Mike Desjarlais, Ray Lemke and Thomas Mattsson from Sandia, and Martin French, Nadine Nettelmann and Ronald Redmer from the University of Rostock’s Institute of Physics.

Research support was provided by the German Science Foundation and the National Nuclear Security Administration.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

| Newswise Science News
Further information:
http://www.sandia.gov

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>