Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sailing the Titan Seas

10.05.2011
NASA Selects Mission to Saturn’s Moon for Discovery Program Development

The Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Md., is managing a project to explore the organic seas of Saturn’s moon Titan, one of three proposals selected by NASA this week as candidates for the agency’s next Discovery Program mission.

The Titan Mare Explorer, or TiME, would perform the first direct inspection of an ocean environment beyond Earth by landing in, and floating on, a large methane-ethane sea on the cloudy, complex moon. The mission would be led by principal investigator Ellen Stofan of Proxemy Research Inc. in Gaithersburg, Md. Lockheed Martin in Denver would build the TiME capsule, with scientific instruments provided by APL, NASA Goddard Space Flight Center in Greenbelt, Md., and Malin Space Science Systems in San Diego.

Also selected were a NASA Jet Propulsion Laboratory lander that would study the Martian interior, and a NASA Goddard project to land on a comet multiple times and observe its interaction with the Sun. Chosen from 28 full-mission proposals, each investigation team now receives $3 million to develop a detailed concept study. After another review of those studies in 2012, NASA will select one to develop for launch. The selected mission will be cost-capped at $425 million, not including launch vehicle funding.

APL also has a role on the NASA Goddard mission team, to provide a high-resolution telescopic camera for the “Comet Hopper” spacecraft.

“NASA’s comment on the Discovery selection was, ‘if ever there was a time to demonstrate being able to think differently, this is it,’” says John Sommerer, head of APL’s Space Department. “It’s ‘common knowledge’ that outer-planets missions are billion-dollar operations, but our team proposed a lander on Titan in the low-cost Discovery mission series. Coming off the success of both the MESSENGER mission to Mercury and the New Horizons mission now on its way to Pluto, it’s clear that APL has met the challenge to think differently.”

The TiME capsule would launch in 2016 and reach Titan in 2023, parachuting onto the moon’s second-largest northern sea, the Ligeia Mare. For 96 days the capsule would study the composition and behavior of the sea and its interaction with Titan’s weather and climate. TiME would also seek evidence of the complex organic chemistry that may be active on Titan today, and that may be similar to processes that led to the development of life on the early Earth.

NASA’s Discovery Program sponsors frequent, cost-capped solar system exploration missions with highly focused scientific goals. The Applied Physics Laboratory led the first Discovery-class mission, NEAR, which in 2000-2001 became the first spacecraft to orbit and land on an asteroid. APL also leads one of the program’s latest successes, MESSENGER, which began a yearlong orbit of the planet Mercury in March 2011. NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Discovery Program for the agency’s Science Mission Directorate. To learn more, visit http://discovery.nasa.gov.

The Applied Physics Laboratory, a division of The Johns Hopkins University, meets critical national challenges through the innovative application of science and technology.

Michael Buckley | Newswise Science News
Further information:
http://www.jhuapl.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A materials scientist’s dream come true

21.08.2018 | Materials Sciences

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>