Rutgers-led research could lead to more efficient electronics

An exotic magnetic insulator conducts electricity along its edges without energy loss. The M stands for magnetization of the magnet. Credit: Wenbo Wang/Rutgers University-New Brunswick

A Rutgers-led team of physicists has demonstrated a way to conduct electricity between transistors without energy loss, opening the door to low-power electronics and, potentially, quantum computing that would be far faster than today's computers.

Their findings, which involved using a special mix of materials with magnetic and insulator properties, are published online in Nature Physics.

“This material, although it's much diluted in terms of magnetic properties, can still behave like a magnet and conducts electricity at low temperature without energy loss,” said Weida Wu, senior author of the study and associate professor in the Department of Physics and Astronomy at Rutgers University-New Brunswick. “At least in principle, if you can make it work at a higher temperature, you can use it for electronic interconnections within silicon chips used in computers and other devices.”

Study co-authors in China combined chromium and vanadium as magnetic elements with an insulator consisting of bismuth, antimony and tellurium. When electrons in this special material are aligned in one direction – like a compass needle pointing north – an electric current can only flow along its edges in one direction, leading to zero energy loss. That means electricity could be conducted between transistors within silicon chips used in computers and other electronics with maximum efficiency.

Current silicon chips use primarily metal for electrical interconnections in transistors, but that leads to substantial energy loss, Wu said.

The scientists demonstrated the uniform alignment of spinning electrons in the special magnetic insulator – called the quantum anomalous Hall insulator. It conducts electricity without energy loss when the temperature is close to absolute zero: minus 459.67 degrees Fahrenheit. Next steps would include demonstrating the phenomenon at a much higher and more practical temperature for electronics, along with building a platform for quantum computing.

###

The study was led by Wenbo Wang, a physics doctoral student in Rutgers' School of Graduate Studies. Co-authors include scientists at Tsinghua University and the Collaborative Innovation Center of Quantum Matter, both in Beijing, China.

Media Contact

Todd Bates
todd.bates@rutgers.edu
848-932-0550

 @RutgersU

http://www.rutgers.edu 

Media Contact

Todd Bates EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors