Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian physicists upgrade cheap diode laser for use in precise measurements

05.11.2018

Russian physicists have developed a method for drastically narrowing the emission spectrum of an ordinary diode laser, like that in a laser pointer. This makes their device a useful replacement for the more complex and expensive single-frequency lasers, enabling the creation of compact chemical analyzers that can fit into a smartphone, cheap lidars for self-driving cars, as well as security and structural health monitoring systems on bridges, gas pipelines, and elsewhere. The study came out Oct. 26 in Nature Photonics and was co-authored by researchers fr om the Russian Quantum Center (RQC), the Moscow Institute of Physics and Technology (MIPT), Lomonosov Moscow State University (MSU), and Samsung R&D Institute Russia.

"This work has two main results," said the paper's lead author RQC Scientific Director Michael Gorodetsky, who is also an MSU professor. "First, it serves to show that you can make a cheap narrow-linewidth laser, which would be single-frequency yet highly efficient and compact.


Physicists have developed a method for drastically narrowing the emission spectrum of an ordinary diode laser, like that in a laser pointer, for use in compact chemical analyzers that can fit into a smartphone, cheap lidars for self-driving cars, as well as security and structural health monitoring systems on bridges, gas pipelines, and elsewhere.

Credit: Pavlov NG et al./Nature Photonics

Secondly, the same system with virtually no modifications can be used for generating optical frequency combs. It can thus be the core component of a spectroscopic chemical analyzer."

The applications of lasers are many. Among them are laser eye surgery, laser sights, and fiber optic communication. One of the key uses of lasers is spectroscopy, which measures the precise chemical composition of virtually anything.

The so-called optical frequency comb technique underlies laser-based spectroscopy, pioneered by the 2005 Nobel laureates in physics, John Hall from the U.S. and Theodor Hänsch from Germany. The two developed a laser device that generates optical radiation at a million extremely stable frequencies.

The radiation in the gain medium of such lasers "bounces" between mirrors and is ultimately emitted as a continuous train of brief pulses of light of a million different colors. Each pulse lasts mere femtoseconds -- millionths of a billionth of a second. The emission spectrum of such a laser consists of a great number of evenly spaced narrow spectral lines, the "teeth" of the optical comb.

An optical laser frequency comb can be used as a "ruler" to accurately measure light frequency and therefore make precise spectrometric measurements. Other applications include satellite navigation, accurate time data transfer, and the radial velocity method for detecting extrasolar planets.

It turned out that there is an easier way to generate frequency combs, which relies on optical microresonators. These are ring- or disk-shaped transparent components. By virtue of their material's nonlinearity, they transform pump laser radiation into a frequency comb, also referred to as a microcomb.

"Optical microresonators with whispering gallery modes were first proposed at MSU's Faculty of Physics in 1989. They offer a unique combination of submillimeter size and an immensely high quality factor," explained study co-author, MIPT doctoral student Nikolay Pavlov. "Microresonators open the way toward generating optical combs in a compact space and without using up much energy."

Not any laser can be used to pump optical frequency combs in a microresonator. The laser needs to be both powerful and monochromatic. The latter means that the light it emits has to fall into a very narrow frequency band. The most common and cheap lasers nowadays are diode lasers. Although they are compact and convenient, in spectroscopy they fall short of more complex and expensive devices. The reason is that diode lasers are not sufficiently monochromatic: The radiation they emit is "smeared" across a 10-nanometer band.

"To narrow down the linewidth of a diode laser, it is usually stabilized using an external resonator or a diffraction grating," explained Gorodetsky. "This reduces the linewidth, but the cost is a major decrease in power, and the device is no longer cheap, nor is it compact."

The researchers found a simple and elegant solution to the problem. To make laser light more monochromatic, they used the very microresonators that generate optical frequency combs. That way they managed to retain nearly the same laser power and size -- the microresonator is mere millimeters across -- while also increasing monochromaticity by a factor of almost 1 billion. That is, the transmission band is narrowed down to attometers -- billionths of a billionth of a meter -- and an optical frequency comb is generated, if required.

"As of now, compact and inexpensive diode lasers are available for almost the entire optical spectrum," added Pavlov. "However, their natural linewidth and stability are insufficient for many prospective tasks. In this paper, we show that it is possible to effectively narrow down the wide spectrum of powerful multifrequency diode lasers, at almost no cost to power. The technique we employ involves using a microresonator as an external resonator to lock the laser diode frequency. In this system, the microresonator can both narrow the linewidth and generate the optical frequency comb."

The proposed design has many possible applications. One of them is in telecommunications, wh ere it would considerably improve the bandwidth of fiber optic networks by increasing the number of channels. Another sphere that would benefit is the design of sensors, such as reflectometers used as the basis of security and monitoring systems. For example, if a fiber optic cable runs along a bridge or an oil pipeline, the light in the cable will respond to the slightest disturbances or variations in the geometry of the object, pinpointing potential problems.

Single-frequency lasers can be used in lidars, or optical radars, which are installed on self-driving cars, among other uses. Finally, the technology enables highly precise analyzers, such as those measuring the composition of air or running medical diagnostics, that could be integrated into smartphones or watches.

"The demand for such lasers would be really high," said Gorodetsky.

The physicist also pointed out that all authors of the paper are Russian researchers, which is a fairly rare occasion for publications in such a high-ranking journal.

###

This research was supported by the Russian Science Foundation.

Media Contact

Ilyana Zolotareva
shaibakova@phystech.edu
7-977-771-4699

 @phystech_en

https://mipt.ru/english/ 

Ilyana Zolotareva | EurekAlert!
Further information:
https://mipt.ru/english/news/physicists_devise_a_way_to_turn_cheap_diode_lasers_into_single_frequency_ones_suitable_for_portable_chemical_analyzers_and_other_applications
http://dx.doi.org/10.1038/s41566-018-0277-2

More articles from Physics and Astronomy:

nachricht Levitating objects with light
19.03.2019 | California Institute of Technology

nachricht Stellar cartography
19.03.2019 | Leibniz-Institut für Astrophysik Potsdam

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Molecular motors run in unison in a metal-organic framework

20.03.2019 | Life Sciences

Active substance from plant slows down aggressive eye cancer

20.03.2019 | Life Sciences

Novel sensor system improves reliability of high-temperature humidity measurements

20.03.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>