Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary method generates new template for microelectronics

25.02.2009
Copolymer may enable 10 times more computer memory

Researchers say a newly tested method for producing super dense, defect-free, thin polymer films is the fastest, most efficient method ever achieved and it may dramatically improve microelectronic storage capabilities such as those in computer memory sticks.

In the February 20 issue of the journal Science, researchers at the University of Massachusetts Amherst and their colleagues at the University of California Berkeley, report how they designed a new way to guide the self-assembly of the material used to store computer memory, layered block copolymers, and generate up to 10 times more storage space than similarly sized copolymers.

The researchers say they developed a defect-free method that can generate more than 10-terabit-per-square-inch copolymer where other efforts achieved at most one terabit per square inch. A terabit is an information storage unit equal to one trillion bits.

"We can generate nearly perfect arrays over macroscopic surfaces where the density is over 15 times higher than anything achieved before," said Thomas Russell director of the UMass Materials Research Science and Engineering Center. He co-led the research with Ting Xu, a member of the Department of Materials Science and Engineering at Berkeley. "We applied a simple concept to solve several problems at once, and it really worked out," Russell said.

The concept involved stacking atoms more closely together than previously thought possible to produce the highest density copolymer ever achieved, one capable of storing more information than previous copolymers. Researchers used surface ridges of a base crystal to guide the assembly very much like using the corrugations in cardboard to direct how closely marbles can be packed together.

For the copolymer's base layer, the researchers used commercially-available sapphire wafers, which start out flat. After heating them from 1300 to 1500 degrees Celsius for 24 hours, the wafer's surface reorganized into a sawtooth topography with an inherent orientation. A thin copolymer film layer then was applied causing the underlying sawtooth corrugations to guide the film's self-assembly in a highly-ordered way to form an ultra-dense hexagonal, or honeycomb, crystalline lattice.

Additionally, by varying the annealing temperature, the scientists were able to change the angle and height of the sawteeth and the depth of the troughs between their peaks. The result enabled researchers to produce more densely packed troughs, which is where computer memory is stored.

The work was supported by the National Science Foundation and the Department of Energy's Office of Basic Energy Science.

"I expect this new method of producing highly ordered macroscopic arrays of nanoscopic elements will revolutionize the microelectronic and storage industries and perhaps others," said Russell.

He points out most previous efforts to create a well-ordered base material onto which electronic information is stored topped out at 15 nanometers for the smallest achievable pattern size. But "we've shattered that barrier and I think we can go farther," Russell said.

"This research by the teams at UMass Amerherst and Berkeley represents a significant breakthrough in the use of polymer self-assembly to create a high density of addressable locations in a thin film," said NSF program manager William J. Brittain. "Most significantly, the simple crystalline lattice used as the template may serve as a revolutionary step for a new generation of computer memory."

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>