Revealing new applications for carbon nanomaterials in hydrogen storage

Experimental and theoretical efforts were combined in a synergistic approach and the results, published this week in the ASAP section of the journal Nano Letters, will fasten efforts to develop new catalysts.

Our energy-hungry world has become increasingly dependent on new methods to store and convert energy for new, environmentally friendly modes of transportation and electrical energy generation as well as for portable electronics. Mobility — the transport of people and goods — is a socioeconomic reality that will surely increase in the coming years. Hydrogen, which can be produced with little or no harmful emissions, has been projected as a long term solution for a secure energy future. Research into safe and efficient means of hydrogen production, storage, and use is essential to make the “hydrogen economy” a reality.

Car manufactures are showing interest in using solid state hydrogen storage materials, e.g. NaAlH4, as new energy storage media. The functional properties of these materials however have to be improved by catalysts. The effect of earlier catalysts, e.g. Ti, has been difficult to explain. The current results give an unambiguous understanding of the mechanism at work in the new carbon nanomaterial catalysts.

The researchers set out to understand the mechanism behind the catalytic effects of carbon nanomaterials, specifically on the example of sodium alanate, which is a popular material for hydrogen storage studies.

“Now that the catalytic capabilities of carbon nanomaterials have been demonstrated so clearly and the mechanism that makes this behaviour possible has been understood, we expect a strong impulse on putting this effect to use in practical applications.”, says Professor Rajeev Ahuja.

“Certainly, our findings have the strongest impact in the field of hydrogen storage, but beyond that, the same mechanism that we revealed can make carbon nanomaterials a very important catalyst in many other systems as well.”

The extensive simulations were performed at Uppsala University's Multidisciplinary Center for Advanced Computational Science (UPPMAX).

Media Contact

Rajeev Ahuja EurekAlert!

More Information:

http://www.uu.se

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors