Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Return of the comet: 96P spotted by ESA, NASA satellites

06.11.2017

The ESA (European Space Agency) and NASA mission SOHO -- short for Solar and Heliospheric Observatory -- got a visit from an old friend this week when comet 96P entered its field of view on Oct. 25, 2017. The comet entered the lower right corner of SOHO's view, and skirted up and around the right edge before leaving on Oct. 30. SOHO also spotted comet 96P in 1996, 2002, 2007 and 2012, making it the spacecraft's most frequent cometary visitor.

At the same time, comet 96P passed through a second NASA mission's view: STEREO -- short for Solar and Terrestrial Relations Observatory -- also watched the comet between Oct. 26-28, from the opposite side of Earth's orbit.


The comet entered the bottom of STEREO's view and crossed it diagonally before leaving on Oct. 28. Most of the corona has been suppressed in order to bring out the comet, leaving only the dynamic flow of the solar wind.

Credit: NASA's Goddard Space Flight Center/STEREO/Bill Thompson/Joy Ng

It is extremely rare for comets to be seen simultaneously from two different locations in space, and these are the most comprehensive parallel observations of comet 96P yet. Scientists are eager to use these combined observations to learn more about the comet's composition, as well as its interaction with the solar wind, the constant flow of charged particles from the Sun.

Both missions gathered polarization measurements of the comet; these are measurements of sunlight in which all the light waves become oriented the same way after passing through a medium -- in this case, particles in the tail of the comet. By pooling the polarization data together, scientists can extract details on the particles that the light passed through.

"Polarization is a strong function of the viewing geometry, and getting multiple measurements at the same time could potentially give useful information about the composition and size distribution of the tail particles," said William Thompson, STEREO chief observer at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Comet 96P -- also known as comet Machholz, for amateur astronomer Dan Machholz's 1986 discovery of the comet -- completes an orbit around the Sun every 5.24 years. It makes its closest approach to the Sun at a toasty 11 million miles -- a very close distance for a comet.

When comet 96P appeared in SOHO's view in 2012, amateur astronomers studying the SOHO data discovered two tiny comet fragments some distance ahead of the main body, signaling the comet was actively changing. This time around they have detected a third fragment -- another breadcrumb in the trail that indicates the comet is still evolving.

Scientists find comet 96P interesting because it has an unusual composition and is the parent of a large, diverse family, referring to a group of comets sharing a common orbit and originating from a much larger parent comet that over millennia, broke up into smaller fragments.

Comet 96P is the parent of two separate comet groups, both of which were discovered by citizen scientists studying SOHO data, as well as a number of Earth-crossing meteor streams. By studying the comet's ongoing evolution, scientists can learn more about the nature and origins of this complex family.

Lina Tran | EurekAlert!

Further reports about: ESA Goddard Space Flight Center NASA NASA satellites SOHO polarization

More articles from Physics and Astronomy:

nachricht New gravitational-wave model can bring neutron stars into even sharper focus
22.05.2020 | University of Birmingham

nachricht Electrons break rotational symmetry in exotic low-temp superconductor
20.05.2020 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>