Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First results from Large Hadron Collider announced

27.07.2010
First results from Large Hadron Collider announced: University of Toronto team plays leading role

A group of University of Toronto high-energy physicists, along with their 3,000 ATLAS colleagues, announced they have broken world records in the search for new particles as the first findings from the Large Hadron Collider (LHC) were presented this morning in Paris, France.

The first results, following only three months of successful operation of the LHC, have “re-discovered” some of the familiar particles that lie at the heart of the Standard Model of physics. The Standard Model theory has formed the basis of theoretical particle physics for more than 30 years, explaining the particles of matter and the forces that bind them. The first results confirm that the Standard Model is working as expected. This is an essential step before the LHC moves on to new territory, including its ultimate goal of finding the Higgs Boson particle aka the God particle. If found, the Higgs Boson would fully satisfy the Standard Model theory. It would explain why all other known particles exhibit the mass they do and how all existing matter came to be. The scientists are also hoping to uncover the solution to the puzzle of mysterious dark matter that dominates the universe.

The ATLAS collaboration, which includes 38 countries, produced many of the first results. ATLAS is a detector at the LHC that searches for new discoveries in the head-on collisions of extraordinarily high-energy protons. The Canadian contingent of ATLAS, and in particular its U of T members, played a key role in these searches by setting, with an exceptionally high degree of sensitivity, new limits on the mass of such new particles.

Pierre Savard, a U of T physicist and TRIUMF scientist who is one of the two conveners of the Exotics physics group of the ATLAS collaboration, said of this result: “This is an important milestone for ATLAS and the LHC. It signals that we are now exploring uncharted territory at the high energy frontier".

“This means that we can discard a host of theoretical models. Perhaps most importantly, it means that the LHC is now the discovery machine for the next decade,” says team member U of T physicist, Pekka Sinervo.

The Canadian team examined over 200 million proton-proton collisions, looking for collisions that produced particles hundreds of times heavier than ordinary matter. Various theories predict the existence of such objects, known as “excited quarks”. If excited quarks were observed, it would turn the Standard Model on its head, revolutionizing scientists’ understanding of matter and the forces that causes particles to bind together or interact in other ways. Finding no evidence of such particles, the team was able to exclude their existence below a mass of 1,290 GcV/c2 and so reconfirm allegiance to the Standard Model.

The LHC, the world’s largest particle accelerator was launched on March 27. Located in Switzerland, the collider has a circumference of 17 miles and is located 330 feet underground near the French-Swiss border. The LHC is still in its early days of operation, as it makes steady progress toward its ultimate operating conditions. The luminosity – a measure of the collision rate – has already risen by a factor of more than a thousand since the end of March.

All U of T faculty members involved in the project have assisted in designing, building and operating the facility in Switzerland. Savard, who is internationally renowned for being at the centre of discoveries in exotic physics, and his students took leadership roles in the most recent results. He is currently spending two weeks per month coordinating scientific activities at the facility. Savard and his colleagues are also making use of the SciNet supercomputer installed at U of T in 2009 to analyse the huge volume of data involved in the project, an effort supported by Compute Canada, the Canada Foundation for Innovation and the Natural Sciences and Engineering Research Council of Canada.

Scientists will get an opportunity to learn more about the first results of the LHC in August when the University of Toronto hosts the 2010 international Hadron Collider Physics Symposium.

MEDIA CONTACTS:

Pierre Savard
Department of Physics
University of Toronto
savard@physics.utoronto.ca
416-420-0974
Pekka Sinervo
Department of Physics
University of Toronto
pekka.sinervo@utoronto.ca
647-283-3074
Peter Krieger
Department of Physics
University of Toronto
krieger@physics.utoronto.ca
416-978-2950
416-465-8186
Kim Luke
Communications, Faculty of Arts & Science
University of Toronto
kim.luke@utoronto.ca
416-978-4352

Kim Luke | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>