Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Resolving a Galactic Mystery

01.05.2009
An extremely deep Chandra X–ray Observatory image of a region near the center of our Galaxy has resolved a long-standing mystery about an X-ray glow along the plane of the Galaxy.

The glow in the region covered by the Chandra image was discovered to be caused by hundreds of point-like X-ray sources, implying that the glow along the plane of the Galaxy is due to millions of such sources.


X-ray: NASA/CXC/TUM/M.Revnivtsev et al.; IR: NASA/JPL-Caltech/GLIMPSE Team

This extremely deep Chandra X--ray Observatory image has resolved a long-standing mystery about an X-ray glow along the plane of the Milky Way. The Chandra results show that the X-ray emission in the region is caused by hundreds of point-like sources, implying that the glow along the plane of the Galaxy is due to millions of such sources. In this image, the Chandra field-of-view, a region located only about 1.4 degrees from the Galactic Center, is pulled out from an infrared image from the Spitzer Space Telescope.

This image shows an infrared view from the Spitzer Space Telescope of the central region of the Milky Way, with a pullout showing a Chandra image of a region located only 1.4 degrees away from the center of the Galaxy.

The so-called Galactic ridge X-ray emission was first detected more than two decades ago using early X-ray observatories such as HEAO-1 and Exosat. The ridge was observed to extend about two degrees above and below the plane of the Galaxy and about 40 degrees along the plane of the galaxy on either side of the galactic center. It appeared to be diffuse.

One interpretation of the Galactic X-ray ridge was that it is emission from 100-million-degree gas. This interpretation is problematic because the disk of the Galaxy is not massive enough to confine such hot gas, which should flow away in a wind. Replenishing the gas would then be a problem, since plausible sources of energy such as supernovas are not nearly powerful enough.

A very deep Chandra observation, lasting for about 12 days, was used to study the nature of this ridge emission. The field was chosen to be close enough to the Galactic plane so that the ridge emission was strong, but in a region with relatively little absorption from dust and gas to maximize the number of sources that might be detected. A total of 473 sources were detected in an area on the sky only about 3% of the size of the full Moon, one of the highest densities of X-ray sources ever seen in our Galaxy.

It was found that more than 80% of the seemingly diffuse ridge of X-ray emission was resolved into individual sources. These are believed to be mostly white dwarfs pulling matter from companion stars and double stars with strong magnetic activity that are producing X-ray outbursts or flares that are similar to, but more powerful than the flares seen on the Sun. These stars are unrelated to the large-scale structures seen towards the center of the Spitzer image, which are probably caused by young massive stars.

The paper reporting these results appears in the April 30th issue of Nature. This work was led by Mikhail Revnivtsev from the Excellence Cluster Universe, Technical University Munich, in Garching, Germany, and from the Space Research Institute, in Moscow, Russia. The co-authors were Sergey Sasanov of the Space Research Institute in Moscow, Russia; Eugene Churazov of the Max Planck Institute for Astrophysics (MPA) in Garching, Germany; William Forman and Alexey Vikhlinin from the Harvard-Smithsonian Center for Astrophysics and Rashid Sunyaev from MPA.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

Megan Watzke | Newswise Science News
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>