Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researching the LED Wallpaper of the Future

23.02.2018

Physicists from the University of Bremen have made a major breakthrough in understanding novel atomic thin materials that can be used, for example, to affix efficient flexible displays on curved surfaces. The results were recently published by the internationally renowned journal “Nature Communications”.

We live in a world of displays whose size and color-brilliance are constantly increasing. The further development of the light bulb is simple: It is increasingly being replaced by LEDs, in which so-called semiconductors produce the light.


Graphical representation of stacks of atomic thin crystals

Frank Jahnke

However, the uses of displays are limited because conventional semiconductor materials tend to be inflexible and rigid. Although it is possible to produce displays with organic light-emitting diodes (OLEDs), their lifetime and light output are lower than their inorganic relatives.

Now, new materials are coming on stream which are extremely thin and produce very intense light –and are at the same time surprisingly easy to manufacture: Using conventional adhesive tape it is even possible to strip individual atomic layers of special crystals in the laboratory.

Particularly suitable for this purpose are the so-called “van der Waals” crystals. A key idea here is the principle of the “Lego modular system”. The functionalities of luminous and electrically conductive, atomically thin materials are combined by stacking them directly on top of one another.

Innovative material allows use in sensors and solar cells

The materials produced in this way exhibit enormous mechanical stability. Not only do they efficiently emit light, they can also absorb light and turn it into electricity. This has already resulted in initial applications in highly sensitive sensors, and their use in flexible solar panels also seems to be a next step. This feature is particularly interesting in view of the growing demand for renewable energy.

Dancing game of particles explored

Light in a certain range of the color spectrum is generated in semiconductors by the emission of positive and negative electric charges. Owing to their different polarities, the opposite charges attract each other and can combine to form new composite particles, so-called excitons, with altered properties. In the course of their basic research on new materials, the physics team at the University of Bremen has developed a method with which these composite particles can be visualized and studied.

The scientists have been able to analyze how the occurrence of composite particles depends on the number of charges that can be controlled externally with a light emitting diode. “The unequal charges show a behavior very similar to that of dancers on a differently populated dance floor. If the density is low, there are very few dancers on the floor and it’s difficult to find a partner – so everyone dances on their own. On a well-filled dance floor, however, couples form and dance together undisturbed.

Eventually, though, an overcrowded dance floor leads to the couples colliding a lot, so that they separate and everyone dances alone again,” is how the early-career researcher Dr. Alexander Steinhoff explains his research to a layperson.

“We were able to show that the composite particles can be visualized by means of photoelectron spectroscopy.” He goes on to explain, “By so doing, a high-energy light particle is irradiated. The composite particle is crushed and its constituents are released from the semiconductor and lock onto the structure of the composite particle.”

New method brings structure into the dance

The authors suggest in the Nature article to use these findings. The relationship between free and paired charges directly affects the optical and electronic properties of the material. It can be controlled by targeted structuring of the environment to which atomic thin materials react sensitively. The scientists hereby make an important contribution to handling the “Lego-like modular system” and the production of ultra-thin opto-electronic components with tailor-made properties.

The work was funded by the German Research Foundation (DFG) in the frame of the graduate school “Quantum Mechanical Materials Modeling” at the University of Bremen. The article “Exciton fission in monolayer transition metal dichalcogenide semiconductors” can be read under this link: www.nature.com/articles/s41467-017-01298-6  (DOI number: 10.1038 / s41467-017-01298-6).

Attention editors: You will find images under:
https://seafile.zfn.unibremen.de/d/2bd6be7b3b1a4f52a4b7/

If you would like more information on this topic, feel free to contact:
Prof. Dr. Frank Jahnke
University of Bremen
Institute of Theoretical Physics
Phone: +49 421 218-62050
Email: jahnke@itp.uni-bremen.de

Stefanie Möller | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bremen.de

More articles from Physics and Astronomy:

nachricht Argonne and CERN weigh in on the origin of heavy elements
31.03.2020 | DOE/Argonne National Laboratory

nachricht Physicist from Hannover Develops New Photon Source for Tap-proof Communication
30.03.2020 | Leibniz Universität Hannover

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Phage capsid against influenza: Perfectly fitting inhibitor prevents viral infection

31.03.2020 | Life Sciences

A 'cardiac patch with bioink' developed to repair heart

31.03.2020 | Life Sciences

Artificial intelligence can speed up the detection of stroke

31.03.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>