Researchers Take First Look into the “Eye” of Majoranas

Atomic force microscopy image of the end of a mono-atomic iron wire. The individual iron atoms are clear to see, as well as the “eye” of the Majorana fermions on the end. University of Basel, Department of Physics

Around 75 years ago, Italian physicist Ettore Majorana hypothesized the existence of exotic particles that are their own antiparticles. Since then, interest in these particles, known as Majorana fermions, has grown enormously given that they could play a role in creating a quantum computer.

Majoranas have already been described very well in theory. However, examining them and obtaining experimental evidence is difficult because they have to occur in pairs but are then usually bound to form one normal electron. Ingenious combinations and arrangements of various materials are therefore required to generate two Majoranas and keep them apart.

Collaboration between theory and practice

The group led by Professor Ernst Meyer has now used predictions and calculations by theoretical physicists Professor Jelena Klinovaja and Professor Daniel Loss (from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics) to experimentally measure states that correspond to Majoranas.

On a superconductor, the researchers evaporated single iron atoms with spin that, due to the row structure of the lead atoms, arrange themselves into a minute wire comprising one row of single atoms. The wires reached an astounding length of up to 70 nanometers.

Single Majoranas on the ends

The researchers examined these mono-atomic chains with the aid of scanning tunneling microscopy and, for the first time, with an atomic force microscope as well. Using the images and measurements, they found clear indications of the existence of single Majorana fermions on the ends of the wires under certain conditions and from a specific wire length on.

Despite the distance between them, the two Majoranas on the ends of the wires are still connected. Together, they form a new state extended across the whole wire that can either be occupied (“1”) or not occupied (“0”) by an electron. This binary property can then serve as the basis for a quantum bit (Qubit) and means that Majoranas, which are also very robust against a number of environmental influences, are promising candidates for creating a future quantum computer.

Predicted wavefunction measured

The researchers from Basel have not only shown that single Majoranas can be generated and measured at the ends of an iron wire, they also performed the first experiment to show that Majoranas are extended quantum objects with an inner structure, as predicted by their theory colleagues. Over an area of several nanometers, the measurements showed the expected wavefunction with characteristic oscillations and twofold decay lengths, which have now been made visible for the first time.

Original paper

Rémy Pawlak, Marcin Kisiel, Jelena Klinovaja, Tobias Meier, Shigeki Kawai, Thilo Glatzel, Daniel Loss, and Ernst Meyer
Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface
npj Quantum Information (2016), doi: 10.1038/npjqi.2016.35

Further information

Prof. Dr. Jelena Klinovaja, University of Basel, Department of Physics, tel +41 61 267 36 56, email: jelena.klinovaja@unibas.ch
Prof. Dr. Daniel Loss, University of Basel, Department of Physics, tel +41 61 267 37 49, email: daniel.loss@unibas.ch
Prof. Dr. Ernst Meyer, Univeristy of Basel, Department of Physics, tel +41 61 267 37 24, email:ernst.meyer@unibas.ch

Media Contact

Reto Caluori Universität Basel

More Information:

http://www.unibas.ch

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors