Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers synthesize atomically precise diamond-shaped nanoclusters of silver

12.09.2016

A wide international collaboration involving researchers from four countries - China, Australia, Germany and Finland - have managed to synthesize and characterize two previously unknown, record-large silver nanoclusters of 136 and 374 silver atoms.

These diamond-shaped nanoclusters (see Figure), consisting of a silver core of 2 to 3 nanometers and a protecting layer of silver atoms and organic thiol molecules, are the largest ones whose structure is now known to atomic precision. The research (1) was published in Nature Communications on 9 September 2016.


This figure shows: Upper row: (a) top and (b) side view of the 136-atom silver nanocluster. Lower row: (c) top and (d) side view of the 374-atom silver nanocluster. The metal cores of these clusters have a diameter of 2 and 3 nm, respectively. Silver atoms in the metal core are denoted by large orange sphere. The core is protected by a silver-thiol layer (green: silver; yellow: sulfur; carbon: gray). Courtesy of Nanfeng Zheng, Xiamen University.

Credit: The University of Jyväskylä

The nanoclusters where synthesized in Xiamen University in China and characterized by X-ray crystallography and electron microscopy in China, Australia and Germany. Their electronic structure and optical properties were studied computationally in the Nanoscience Center (NSC) of the University of Jyväskylä in Finland.

Gold nanoclusters that are stabilized by a thiol molecular layer have been known for decades, but only during the latest years silver clusters have attracted more interest in the research community. Silver is a desirable material for nanocluster synthesis since it is a cheaper metal than gold and its optical properties are better controllable for applications. However, synthesis recipes that would produce silver clusters that are stable for prolonged times are not so widely known as for gold.

"These largest atomically precise silver nanoclusters known thus far serve as excellent model systems to understand how silver nanoparticles grow," says Professor Nanfeng Zheng whose research group prepared the clusters in Xiamen University in China. "The internal structure of the metal core is a combination of little crystallites of silver that are joined together to form a five-fold symmetric diamond-shape structure."

"From a theoretical point of view these new clusters are very interesting," says Academy Professor Hannu Häkkinen from the NSC in Jyväskylä. "These clusters are already big enough that they have properties similar to silver metal, such as strong absorption of light leading to collective oscillations of the electron cloud known as plasmons, yet small enough that we can study their electronic structure in detail. Much to our surprise, the calculations showed that electrons in the organic molecular layer take part actively in the collective oscillation of the silver electrons. It seems possible to then activate these clusters by light in order to do chemistry at the ligand surface."

###

The other NSC researchers involved in the work were Xi Chen and Lauri Lehtovaara. The computational work was done at the CSC - the Finnish IT Centre for Science. The work at the University of Jyväskylä was supported by the Academy of Finland.

More information:

Academy Professor Hannu Häkkinen, University of Jyväskylä, Finland, hannu.j.hakkinen(at)jyu.fi tel:+358 400 247 973

Professor Nanfeng Zheng, Xiamen University, China, nfzheng(at)xmu.edu.cn

Academy of Finland Communications
Communications Specialist Leena Vähäkylä
tel. +358 295 335 139
firstname.lastname(at)aka.fi

References:

(1) H. Yang, Y. Wang, X. Chen, X. Zhao, L. Gu, H. Huang, J. Yan, C. Xu, G. Li, J. Wu, A.J. Edwards, B. Dittrich, Z. Tang, D. Wang, L. Lehtovaara, H. Häkkinen and N. Zheng, "Plasmonic twinned silver nanoparticles with molecular precision", Nature Communications 7, 12809 (2016), published online 9 September 2016, doi: 10.1038/ncomms12809

Figure: Upper row: (a) top and (b) side view of the 136-atom silver nanocluster. Lower row: (c) top and (d) side view of the 374-atom silver nanocluster. The metal cores of these clusters have a diameter of 2 and 3 nm, respectively. Silver atoms in the metal core are denoted by large orange sphere. The core is protected by a silver-thiol layer (green: silver; yellow: sulfur; carbon: gray). Courtesy of Nanfeng Zheng, Xiamen University.

Hannu Häkkinen | EurekAlert!

More articles from Physics and Astronomy:

nachricht Long-distance quantum information exchange -- success at the nanoscale
18.03.2019 | University of Copenhagen

nachricht How heavy elements come about in the universe
18.03.2019 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>