Researchers Hear Puzzling New Physics from Graphene Quartet's Quantum Harmonies

Published in this week’s issue of Nature,* the new research raises several intriguing questions about the fundamental physics of this exciting material and reveals new effects that may make graphene even more powerful than previously expected for practical applications.

Graphene is one of the simplest materials—a single-atom-thick sheet of carbon atoms arranged in a honeycomb-like lattice—yet it has many remarkable and surprisingly complex properties. Measuring and understanding how electrons carry current through the sheet is important to realizing its technological promise in wide-ranging applications, including high speed electronics and sensors. For example, the electrons in graphene act as if they have no mass and are almost 100 times more mobile than in silicon. Moreover, the speed with which electrons move through graphene is not related to their energy, unlike materials such as silicon where more voltage must be applied to increase their speed, which creates heat that is detrimental to most applications.

To fully understand the behavior of graphene’s electrons, scientists must study the material under an extreme environment of ultra-high vacuum, ultra-low temperatures, and large magnetic fields. Under these conditions, the graphene sheet remains pristine for weeks, and the energy levels and interactions between the electrons can be observed with precision (see “Graphene Yields Secrets to Its Extraordinary Properties,” http://www.nist.gov/public_affairs/techbeat/tbx20090514_graphene.htm, NIST Tech Beat Extra, May 14, 2009).

NIST has recently constructed the world’s most powerful and stable scanning-probe microscope, with an unprecedented combination of low temperature (as low as 10 millikelvin, or 10 thousandths of a degree above absolute zero), ultra-high vacuum, and high magnetic field. In the first measurements made with this instrument, the international team has used its power to resolve the finest differences in the electron energies in graphene, atom-by-atom.

“Going to this resolution allows you to see new physics,” said Young Jae Song, a postdoctoral researcher who helped develop the instrument at NIST and make these first measurements.

And the new physics the team saw raises a few more questions about how the electrons behave in graphene than it answers.

Because of the geometry and electromagnetic properties of graphene’s structure, an electron in any given energy level populates four possible sublevels, called a “quartet.” Theorists have predicted that this quartet of levels would split into different energies when immersed in a magnetic field, but until recently there had not been an instrument sensitive enough to resolve these differences.

“When we increased the magnetic field at extreme low temperatures, we observed unexpectedly complex quantum behavior of the electrons,” said NIST Fellow Joseph Stroscio.

What is happening, according to Stroscio, appears to be a “many-body effect” in which electrons interact strongly with one another in ways that affect their energy levels.

One possible explanation for this behavior is that the electrons have formed a “condensate” in which they cease moving independently of one another and act as a single coordinated unit.

“If our hypothesis proves to be correct, it could point the way to the creation of smaller, very-low-heat producing, highly energy efficient electronic devices based upon graphene,” said Shaffique Adam, a postdoctoral researcher who assisted with theoretical analysis of the measurements.

The research team, led by Joseph Stroscio, includes collaborators from NIST, the University of Maryland, Seoul National University, the Georgia Institute of Technology, and the University of Texas at Austin.

The group’s work was also recently featured in Nature Physics,** in which they describe how the energy levels of graphene’s electrons vary with position as they move along the material’s crystal structure. The way in which the energy varies suggests that interactions between electrons in neighboring layers may play a role.

*Y. J. Song, A. F. Otte, Y. Kuk, Y. Hu, D. B. Torrance, P. N. First, W. A. de Heer, H. Min, S. Adam, M. D. Stiles, A. H. MacDonald, and J. A. Stroscio. High Resolution Tunnelling Spectroscopy of a Graphene Quartet, Nature, Sept. 9, 2010.

**D. L. Miller, K. D. Kubista, G. M. Rutter, Ming Ruan, W. A. de Heer, M. Kindermann, P. N. First, and J. A. Stroscio. Real-space mapping of magnetically quantized graphene states. Nature Physics. Published online Aug. 8, 2010. http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys1736.html

Media Contact

Mark Esser Newswise Science News

More Information:

http://www.nist.gov

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors