Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find ice feature on Saturn's giant moon

30.04.2019

UA-led research team hopes to find the origins of Titan's methane and the organics that coat its surface

Rain, seas and a surface of eroding organic material can be found both on Earth and on Saturn's largest moon, Titan. However, on Titan it is methane, not water, that fills the lakes with slushy raindrops.


This figure shows 3 orientations of Titan's globe. Mapped in blue is the icy corridor.

Credit: NASA/JPL-Caltech/Space Science Institute

Usage Restrictions: This visual may only be used in conjunction with reporting on or posting of this news release. Credit must be given as indicated.

While trying to find the source of Titan's methane, University of Arizona researcher Caitlin Griffith and her team discovered something unexoldpected - a long ice feature that wraps nearly half way around Titan.

Griffith, a professor in the UA Lunar and Planetary Laboratory, is the lead author on the paper published today in Nature Astronomy.

On Titan, atmospheric methane molecules are continuously broken apart by sunlight. The resulting atmospheric haze settles to the surface and accumulates as organic sediments, rapidly depleting the atmospheric methane.

This organic veneer is made up of the material of past atmospheres.

There is no obvious source of methane, except from the evaporation of methane from the polar lakes. But Titan's lakes contain only one-third of the methane in Titan's atmosphere and will be exhausted soon by geological time scales.

One theory is that the methane could be supplied by subsurface reservoirs that vent methane into the atmosphere. Prior studies of Titan indicate the presence of a singular region called Sotra, which looks like cryo-volcano, with icy flow features.

Griffith's team set out to study the composition of Titan's surface, partly hoping to find subtle small cryo-volcanos candidates. They analyzed half of Titan's surface and none were detected, but Sotra was found to be exceptional in that it exhibits the strongest ice features.

Yet the major ice feature the researchers found was completely unexpected. It consists of a linear ice corridor that wraps around 40 percent of Titan's circumference.

"This icy corridor is puzzling, because it doesn't correlate with any surface features nor measurements of the subsurface," Griffith said. "Given that our study and past work indicate that Titan is currently not volcanically active, the trace of the corridor is likely a vestige of the past. We detect this feature on steep slopes, but not on all slopes. This suggests that the icy corridor is currently eroding, potentially unveiling presence of ice and organic strata."

The team's analysis also indicates a diversity of organic material in certain regions. These surface deposits are of interest because laboratory simulations of Titan's atmosphere produce biologically interesting compounds such as amino acids.

Griffith analyzed tens of thousands of spectral images taken of the topmost layer of the surface by Cassini's Visible and Infrared Mapping Spectrometer, using a method that enabled the detection of weak surface features.

This feat was accomplished by Griffith's application of the principal components analysis, or PCA. It allowed her to tease out subtle features caused by ice and organic sediments on Titan's surface from the ubiquitous haze and more obvious surface features. Instead of measuring the surface features individually for each pixel in an image, the PCA uses all of the pixels to recognize the main and more subtle signatures.

Griffith's team compared their results with past studies including the Huygens probe, which landed on Titan in 2005. The comparison validated both the technique and the results. Plans are underway to use the technique to explore the poles where methane seas reside.

"Both Titan and Earth followed different evolutionary paths, and both ended up with unique organic-rich atmospheres and surfaces," Griffth said. "But it is not clear whether Titan and Earth are common blueprints of the organic-rich of bodies or two among many possible organic-rich worlds."

###

A portion of the funding for this research came from NASA space grants.

Media Contact

Mikayla Mace
mikaylamace@email.arizona.edu
520-433-0526

 @UofA

http://uanews.org 

Mikayla Mace | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41550-019-0756-5

More articles from Physics and Astronomy:

nachricht New method for using spin waves in magnetic materials
22.11.2019 | https://idw-online.de/de/institution72

nachricht Extremely energetic particles coupled with the violent death of a star for the first time
22.11.2019 | University of Copenhagen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

New antenna tech to equip ceramic coatings with heat radiation control

22.11.2019 | Materials Sciences

Pollinator friendliness can extend beyond early spring

22.11.2019 | Life Sciences

Wound healing in mucous tissues could ward off AIDS

22.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>