Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover surprising quantum effect in hard disk drive material

26.04.2019

Scientists find surprising way to affect information storage properties in metal alloy.

Sometimes scientific discoveries can be found along well-trodden paths. That proved the case for a cobalt-iron alloy material commonly found in hard disk drives.


Researchers at Argonne have discovered a way to control the direction of electron spin in a cobalt-iron alloy, influencing its magnetic properties. The result could have implications for more powerful and energy-efficient materials for information storage.

Credit: Argonne National Laboratory

As reported in a recent issue of Physical Review Letters, researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory, along with Oakland University in Michigan and Fudan University in China, have found a surprising quantum effect in this alloy.

"When you drive your car down a flat highway with no wind, the dissipating energy from drag is the same regardless of the direction you travel. With the effect we discovered, it's like your car experiences more drag if you're traveling north-south than if you're traveling east-west." -- Argonne materials scientist Olle Heinonen

The effect involves the ability to control the direction of electron spin, and it could allow scientists to develop more powerful and energy-efficient materials for information storage. By changing the electron spin direction in a material, the researchers were able to alter its magnetic state.

This greater control of magnetization allows more information to be stored and retrieved in a smaller space. Greater control could also yield additional applications, such as more energy-efficient electric motors, generators and magnetic bearings.

The effect the researchers discovered has to do with "damping," in which the direction of electron spin controls how the material dissipates energy. "When you drive your car down a flat highway with no wind, the dissipating energy from drag is the same regardless of the direction you travel," said Argonne materials scientist Olle Heinonen, an author of the study.

 "With the effect we discovered, it's like your car experiences more drag if you're traveling north-south than if you're traveling east-west."

"In technical terms, we discovered a sizable effect from magnetic damping in nanoscale layers of cobalt-iron alloy coated on one side of a magnesium oxide substrate," added Argonne materials scientist Axel Hoffmann, another author of the study. "By controlling the electron spin, magnetic damping dictates the rate of energy dissipation, controlling aspects of the magnetization."

The team's discovery proved especially surprising because the cobalt-iron alloy had been widely used in applications such as magnetic hard drives for many decades, and its properties have been thoroughly investigated. It was conventional wisdom that this material did not have a preferred direction for electron spin and thus magnetization.

In the past, however, scientists prepared the alloy for use by "baking" it at high temperature, which orders the arrangement of the cobalt and iron atoms in a regular lattice, eliminating the directional effect. The team observed the effect by examining unbaked cobalt-iron alloys, in which cobalt and iron atoms can randomly occupy each other's sites.

The team was also able to explain the underlying physics. In a crystal structure, atoms normally sit at perfectly regular intervals in a symmetric arrangement. In the crystal structure of certain alloys, there are slight differences in the separation between atoms that can be removed through the baking process; these differences remain in an "unbaked" material.

Squeezing such a material at the atomic level further changes the separation of the atoms, resulting in different interactions between atomic spins in the crystalline environment. This difference explains how the damping effect on magnetization is large in some directions, and small in others.

The result is that very small distortions in the atomic arrangement within the crystalline structure of cobalt-iron alloy have giant implications for the damping effect. The team ran calculations at the Argonne Leadership Computing Facility, a DOE Office of Science User Facility, that confirmed their experimental observations. 

###

The researchers' work appears in the March 21 online edition of Physical Review Letters and is entitled, "Giant anisotropy of Gilbert damping in epitaxial CoFe films." Argonne researchers include Yi Li, Shulei Zhang, Hyeondeok Shin, Hilal Saglam, Vedat Karakas, Ozhan Ozatay, John Pearson, Olle Heinonen, Axel Hoffmann, and Wei Zhang. Yi Li and Wei Zhang are also affiliated with Oakland University. Other contributors include Fanlong Zeng and Yizheng Wu from Fudan University.

The work at Argonne was supported by DOE's Office of Science, as well as the DOE Visiting Faculty Program.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Chris Kramer
ckramer@anl.gov
630-252-5580

 @argonne

http://www.anl.gov 

Chris Kramer | EurekAlert!
Further information:
https://www.anl.gov/article/the-spin-doctors-researchers-discover-surprising-quantum-effect-in-hard-disk-drive-material
http://dx.doi.org/10.1103/PhysRevLett.122.117203

More articles from Physics and Astronomy:

nachricht Better thermal conductivity by adjusting the arrangement of atoms
19.07.2019 | Universität Basel

nachricht Heat transport through single molecules
19.07.2019 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

Better thermal conductivity by adjusting the arrangement of atoms

19.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>