Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop technique to control and measure electron spin voltage

14.07.2017

New tool may provide insight into spintronic devices and exotic physics

Information technologies of the future will likely use electron spin -- rather than electron charge -- to carry information. But first, scientists need to better understand how to control spin and learn to build the spin equivalent of electronic components, from spin transistors, to spin gates and circuits.


Researchers used atomic-size defects in diamonds to detect and measure magnetic fields generated by spin waves.

Image courtesy of Peter and Ryan Allen/Harvard University

Now, Harvard University researchers have developed a technique to control and measure spin voltage, known as spin chemical potential. The technique, which uses atomic-sized defects in diamonds to measure chemical potential, is essentially a nanoscale spin multimeter that allows measurements in chip-scale devices.

The research is published in Science.

"There is growing interest in insulating materials that can conduct spin," said Amir Yacoby, Professor of Physics in the Department of Physics and of Applied Physics at Harvard John A. Paulson School of Engineering and Applied Sciences and senior author of the paper. "Our work develops a new way to look at these spins in materials such as magnets."

In conducting materials, electrons can carry information by moving from point A to point B. This is an electric current. Spin, on the other hand, can propagate through insulating materials in waves -- each electron standing still and communicating spin to its coupled neighbor, like a quantum game of telephone.

To drive these waves from point A to point B, the researchers needed to develop a technique to increase the spin chemical potential -- spin voltage -- at a local level.

"If you have a high chemical potential at location A and a low chemical potential at location B, spin waves start diffusing from A to B," said Chunhui Du, a postdoctoral fellow at the Department of Physics and co-first author of the paper. "This is a very important concept in spintronics, because if you are able to control spin-wave transport, then you can use these spin waves instead of electrical current as carriers of information."

The researchers used two spin-wave injection methods: in the first, they applied fast-oscillating, microwave magnetic fields to excite spin waves. In the second, they converted an electrical current into spin waves using a platinum metal strip located at one end of the magnet.

"What's remarkable is that this material is an insulator; it doesn't conduct any current and still you can send information in the form of spin waves through it," said Toeno Van der Sar, a postdoctoral fellow at the Department of Physics and co-first author of the paper. "Spin waves are so promising because they can travel for a long time without decaying, and there is barely any heat produced because you don't have moving electrons."

Once the team injected spin waves into the material, the next step was to figure out how to measure information about those waves. The researchers turned to nitrogen-vacancy (NV) defects in diamonds. These defects -- in which one carbon atom in a diamond is replaced with a nitrogen atom and a neighboring atom is removed -- can be used to detect minute magnetic fields.

The researchers fabricated tiny rods of diamond containing NV centers and placed them nanometers above the sample. As the spin waves move through the material, they generate a magnetic field, which is picked up by the NV center.

Based on NV-center measurements, researchers can now figure out the spin chemical potential, the number of spin waves, how they are moving through the material and other important insights.

"The nice thing about this technique is that it's very local," said Van der Sar. "You can do these measurements just a few nanometers above the sample, which means that you can spatially study the chemical potential in a chip-scale spin-wave device, for, let's say, a spin-wave computer. This is not possible with some of the other state-of-the-art techniques."

This system could also offer a glimpse into more exotic physics such as the spin-wave Hall effect, or show that spin-wave transport is hydrodynamic.

"The principle we use to control and measure the spin chemical potential is quite general. It opens ways to study more exotic spin phenomena in novel materials and aids the development of new spintronic devices," said Du.

###

This research was supported in part by the Gordon and Betty Moore Foundation's Emergent Phenomena in Quantum Systems (EPiQS) Initiative, the Multidisciplinary University Research Initiative (MURI) Quibit Enabled Imaging, Sensing, and Metrology (QuISM) project and the Army Research Office.

Media Contact

Leah Burrows
lburrows@seas.harvard.edu
617-496-1351

 @hseas

http://www.seas.harvard.edu/ 

Leah Burrows | EurekAlert!

Further reports about: defects diamonds electron spin magnetic fields materials waves

More articles from Physics and Astronomy:

nachricht UNH scientists help provide first-ever views of elusive energy explosion
16.11.2018 | University of New Hampshire

nachricht NASA keeps watch over space explosions
16.11.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>