Researchers to Develop Cyberinfrastructure for Geography Software

Geographic Information Systems (GIS) software has been widely used for spatial problem solving and decision making applications since the 1960s. It has become an invaluable tool for geography-related fields, its uses spanning archaeology, disaster preparedness, public health, resource management, urban planning and much more. However, conventional GIS software isn’t capable of handling the huge volumes of data and complex analysis required for many modern applications.

Cyberinfrastructure is a system that integrates data management, visualization, high-performance computing and human elements to tackle complex problems. This type of supercomputing power could address many GIS scenarios where current software falls short.

Led by Shaowen Wang, a professor of geography and also a senior research scientist at theNational Center for Supercomputing Applications at Illinois, an interdisciplinary team of researchers will work to develop CyberGIS, a comprehensive software framework that will harness the power of cyberinfrastructure for GIS and associated applications. Computer science professor Marc Snir chairs the project steering committee.

“The overarching goal of this project is to establish CyberGIS as a fundamentally new software framework encompassing a seamless integration of cyberinfrastructure, GIS, and spatial analysis and modeling capabilities,” Wang said. “It could lead to widespread scientific breakthroughs that have broad societal impacts.”

The project is part of NSF’s Software Infrastructure for Sustained Innovation program, which aims to promote scalable, sustainable, open-source software elements. In addition to the advanced problem-solving capabilities, the researchers hope that CyberGIS will enhance sharing among researchers and facilitate cross-disciplinary interaction through multiple-user, online collaboration.

“CyberGIS will empower high-performance, collaborative geospatial problem solving,” Wang said. “For example, it could dramatically advance the understanding of disaster preparedness and response and impacts of global climate change.”

The project involves partnerships among academia, government, and industry with an international scope. Partners institutions include Arizona State University, the Conputer Network Center of the Chinese Academy of Sciences, Environmental Systems Research Institute (ESRI), Georgia Institute of Technology, Oak Ridge National Laboratory, University College London Centre for Advanced Spatial Analysis (England), University Consortium for Geographic Information Science, University of California-San Diego, University of California-Santa Barbara, University of Washington, the U.S. Geological Survey, and Victorian Partnership for Advanced Computing (ustralia). The five-year project began in October 2010.

Media Contact

Liz Ahlberg University of Illinois

More Information:

http://www.illinois.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors