Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers demonstrate a platform for future optical transistors


Researchers have demonstrated a new efficient implementation, where photons couple to excitons in single-layer semiconductors.

Leading research groups in the field of nanophotonics are working toward developing optical transistors - key components for future optical computers. These devices will process information with photons instead of electrons, thus reducing the heat and increasing the operation speed.

Photons do not interact with each other well, which creates a big problem for microelectronics engineers. A group of researchers from ITMO University, together with colleagues, have come up with a new solution to this problem by creating a planar system where photons couple to other particles, which enables them to interact with each other.

Credit: Department of Physics, ITMO University

However, photons do not interact with each other well, which creates a big problem for microelectronics engineers. A group of researchers from ITMO University, together with colleagues, have come up with a new solution to this problem by creating a planar system where photons couple to other particles, which enables them to interact with each other.

The principle demonstrated in their experiment can provide a platform for developing future optical transistors. The results of their work are published in Light: Science & Applications.

It is widely known that transistors, key elements of the modern digital world, function thanks to the controlled motion of electrons. This approach has been used for decades, but it has several drawbacks. First, electronic devices tend to heat up when they perform a task, which means that part of the energy is wasted as heat and not used for actual work.

To fight this heating, we need to equip our devices with coolers, thus wasting even more energy. Second, electronic devices have a limited processing speed. Some of these issues can be solved by using photons, light particles, instead of electrons. Devices that use photons for information encoding would produce less heat, require less energy, and work faster.

That is exactly why scientists all over the world conduct research in the field of optical computers. However, the main problem is that photons, unlike electrons, do not interact with each other. Researchers from over the world suggest different methods to "train" photons to interact with each other. The idea of one of these methods is to couple photons with other particles.

A group of researchers from ITMO's Department of Physics and Engineering, together with colleagues, have demonstrated a new efficient implementation, where photons couple to excitons in single-layer semiconductors. Excitons form in semiconductors when electrons are excited leaving behind empty valence bonds (or electron holes, as physicists call them). Both the electron and its hole can interact with each other creating a new particle - an exciton, which in turn can interact with other excitons.

"If we strongly couple excitons to light particles, we will get polaritons," explains Vasily Kravtsov, a leading research fellow at ITMO University and one of the paper's co-authors. "These are partly light, meaning that they can be used to transfer information very fast; but at the same time they can interact with each other very well."

It seems like polaritons are a straightforward solution, and now all we need to do is to create a polariton-based transistor. However, it is not that easy: we need to design a system where these particles could exist long enough while still maintaining their high interaction strength. In the labs of ITMO's Department of Physics and Engineering, polaritons are created with the help of a laser, a waveguide, and an extremely thin molybdenum diselenide semiconductor layer.

A three-atom-thick semiconductor layer is placed on a nanophotonic waveguide, with a precise net of very fine grooves engraved on its surface. After that, it is lit up with a red laser to create excitons in the semiconductor. These excitons couple with light particles creating polaritons, which are "trapped" in the system.

Polaritons obtained in this way not only exist for relatively long periods of time, but also have extra high nonlinearity, meaning that they actively interact with each other.

"It brings us closer to creating an optical transistor, as we now have a planar platform less than 100 nanometers thick, which could be integrated on a chip. As the nonlinearity is rather high, we would not need a powerful laser - a small red light source will suffice, which could also be integrated onto the chip," elaborates Vasily Kravtsov.

At the moment, the study continues, as the researchers have to demonstrate the efficiency of their system at room temperatures.

Media Contact

Alena Gupaisova


Alena Gupaisova | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht ATLAS telescope discovers first-of-its-kind asteroid
25.05.2020 | University of Hawaii at Manoa

nachricht New gravitational-wave model can bring neutron stars into even sharper focus
22.05.2020 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

Latest News

Inexpensive retinal diagnostics via smartphone

25.05.2020 | Medical Engineering

Smart machine maintenance: New AI system also detects unknown faults

25.05.2020 | Information Technology

Artificial Intelligence for optimized mobile communication

25.05.2020 | Information Technology

Science & Research
Overview of more VideoLinks >>>