Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers demonstrate a platform for future optical transistors

09.04.2020

Researchers have demonstrated a new efficient implementation, where photons couple to excitons in single-layer semiconductors.

Leading research groups in the field of nanophotonics are working toward developing optical transistors - key components for future optical computers. These devices will process information with photons instead of electrons, thus reducing the heat and increasing the operation speed.


Photons do not interact with each other well, which creates a big problem for microelectronics engineers. A group of researchers from ITMO University, together with colleagues, have come up with a new solution to this problem by creating a planar system where photons couple to other particles, which enables them to interact with each other.

Credit: Department of Physics, ITMO University

However, photons do not interact with each other well, which creates a big problem for microelectronics engineers. A group of researchers from ITMO University, together with colleagues, have come up with a new solution to this problem by creating a planar system where photons couple to other particles, which enables them to interact with each other.

The principle demonstrated in their experiment can provide a platform for developing future optical transistors. The results of their work are published in Light: Science & Applications.

It is widely known that transistors, key elements of the modern digital world, function thanks to the controlled motion of electrons. This approach has been used for decades, but it has several drawbacks. First, electronic devices tend to heat up when they perform a task, which means that part of the energy is wasted as heat and not used for actual work.

To fight this heating, we need to equip our devices with coolers, thus wasting even more energy. Second, electronic devices have a limited processing speed. Some of these issues can be solved by using photons, light particles, instead of electrons. Devices that use photons for information encoding would produce less heat, require less energy, and work faster.

That is exactly why scientists all over the world conduct research in the field of optical computers. However, the main problem is that photons, unlike electrons, do not interact with each other. Researchers from over the world suggest different methods to "train" photons to interact with each other. The idea of one of these methods is to couple photons with other particles.

A group of researchers from ITMO's Department of Physics and Engineering, together with colleagues, have demonstrated a new efficient implementation, where photons couple to excitons in single-layer semiconductors. Excitons form in semiconductors when electrons are excited leaving behind empty valence bonds (or electron holes, as physicists call them). Both the electron and its hole can interact with each other creating a new particle - an exciton, which in turn can interact with other excitons.

"If we strongly couple excitons to light particles, we will get polaritons," explains Vasily Kravtsov, a leading research fellow at ITMO University and one of the paper's co-authors. "These are partly light, meaning that they can be used to transfer information very fast; but at the same time they can interact with each other very well."

It seems like polaritons are a straightforward solution, and now all we need to do is to create a polariton-based transistor. However, it is not that easy: we need to design a system where these particles could exist long enough while still maintaining their high interaction strength. In the labs of ITMO's Department of Physics and Engineering, polaritons are created with the help of a laser, a waveguide, and an extremely thin molybdenum diselenide semiconductor layer.

A three-atom-thick semiconductor layer is placed on a nanophotonic waveguide, with a precise net of very fine grooves engraved on its surface. After that, it is lit up with a red laser to create excitons in the semiconductor. These excitons couple with light particles creating polaritons, which are "trapped" in the system.

Polaritons obtained in this way not only exist for relatively long periods of time, but also have extra high nonlinearity, meaning that they actively interact with each other.

"It brings us closer to creating an optical transistor, as we now have a planar platform less than 100 nanometers thick, which could be integrated on a chip. As the nonlinearity is rather high, we would not need a powerful laser - a small red light source will suffice, which could also be integrated onto the chip," elaborates Vasily Kravtsov.

At the moment, the study continues, as the researchers have to demonstrate the efficiency of their system at room temperatures.

Media Contact

Alena Gupaisova
pressa@itmo.ru
7-909-160-5018

 @spbifmo_en

http://en.ifmo.ru/ 

Alena Gupaisova | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41377-020-0286-z

More articles from Physics and Astronomy:

nachricht Cherned up to the maximum
10.07.2020 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Porous graphene ribbons doped with nitrogen for electronics and quantum computing
09.07.2020 | University of Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

Goodbye Absorbers: High-Precision Laser Welding of Plastics

10.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>