Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create 'Quantum Cats' Made of Light

03.09.2010
Researchers at the National Institute of Standards and Technology (NIST) have created "quantum cats" made of photons (particles of light), boosting prospects for manipulating light in new ways to enhance precision measurements as well as computing and communications based on quantum physics.

The NIST experiments, described in a forthcoming paper,* repeatedly produced light pulses that each possessed two exactly opposite properties—specifically, opposite phases, as if the peaks of the light waves were superimposed on the troughs. Physicists call this an optical Schrödinger's cat. NIST's quantum cat is the first to be made by detecting three photons at once and is one of the largest and most well-defined cat states ever made from light. (Larger cat states have been created in different systems by other research groups, including one at NIST.)

A "cat state" is a curiosity of the quantum world, where particles can exist in "superpositions" of two opposite properties simultaneously. Cat state is a reference to German physicist Erwin Schrödinger's famed 1935 theoretical notion of a cat that is both alive and dead simultaneously.

"This is a new state of light, predicted in quantum optics for a long time," says NIST research associate Thomas Gerrits, lead author of the paper. "The technologies that enable us to get these really good results are ultrafast lasers, knowledge of the type of light needed to create the cat state, and photon detectors that can actually count individual photons."

The NIST team created their optical cat state by using an ultrafast laser pulse to excite special crystals to create a form of light known as a squeezed vacuum, which contains only even numbers of photons. A specific number of photons were subtracted from the squeezed vacuum using a device called a beam splitter. The photons were identified with a NIST sensor that efficiently detects and counts individual photons (see "NIST Detector Counts Photons With 99 Percent Efficiency," NIST Tech Beat, Apr. 13, 2010, at www.nist.gov/eeel/optoelectronics/detector_041310.cfm.) Depending on the number of subtracted photons, the remaining light is in a state that is a good approximation of a quantum cat says Gerrits—the best that can be achieved because nobody has been able to create a "real" one, by, for instance, the quantum equivalent to superimposing two weak laser beams with opposite phases.

NIST conducts research on novel states of light because they may enhance measurement techniques such as interferometry, used to measure distance based on the interference of two light beams. The research also may contribute to quantum computing—which may someday solve some problems that are intractable today—and quantum communications, the most secure method known for protecting the privacy of a communications channel. Larger quantum cats of light are needed for accurate information processing.

* T. Gerrits, S. Glancy, T. Clement , B. Calkins, A. Lita, A. Miller, A. Migdall, S.W. Nam, R. Mirin and E. Knill. Generation of optical coherent state superpositions by number-resolved photon subtraction from squeezed vacuum. Physical Review A. Forthcoming.

Laura Ost | Newswise Science News
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht When electric fields make spins swirl
15.11.2018 | Institute for Basic Science

nachricht Gravitational waves from a merged hyper-massive neutron star
15.11.2018 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>