Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers convert quantum signals to telecom wavelengths, increase memory times

27.09.2010
Using optically dense, ultra-cold clouds of rubidium atoms, researchers have made advances in three key elements needed for quantum information systems – including a technique for converting photons carrying quantum data to wavelengths that can be transmitted long distances on optical fiber telecom networks.

The developments move quantum information networks – which securely encode information by entangling photons and atoms – closer to a possible prototype system.

Researchers at the Georgia Institute of Technology reported the findings Sept. 26 in the journal Nature Physics, and in a manuscript submitted for publication in the journal Physical Review Letters. The research was sponsored by the Air Force Office of Scientific Research, the Office of Naval Research and the National Science Foundation.

The advances include:

Development of an efficient, low-noise system for converting photons carrying quantum information at infrared wavelengths to longer wavelengths suitable for transmission on conventional telecommunications systems. The researchers have demonstrated that the system, believed to be the first of its kind, maintains the entangled information during conversion to telecom wavelengths – and back down to the original infrared wavelengths.

A significant improvement in the length of time that a quantum repeater – which would be necessary to transmit the information – can maintain the information in memory. The Georgia Tech team reported memory lasting as long as 0.1 second, 30 times longer than previously reported for systems based on cold neutral atoms and approaching the quantum memory goal of at least one second – long enough to transmit the information to the next node in the network.

An efficient, low-noise system able to convert photons of telecom wavelengths back to infrared wavelengths. Such a system would be necessary for detecting entangled photons transmitted by a quantum information system.

"This is the first system in which such a long memory time has been integrated with the ability to transmit at telecom wavelengths," said Brian Kennedy, a co-author of the Nature Physics paper and a professor in the Georgia Tech School of Physics. "We now have the crucial aspects needed for a quantum repeater."

The conversion technique addresses a long-standing issue facing quantum networks: the wavelengths most useful for creating quantum memory aren't the best for transmitting that information across optical telecommunications networks. Wavelengths of approximately 1.3 microns can be transmitted in optical fiber with the lowest absorption, but the ideal wavelength for storage is 795 nanometers.

The wavelength conversion takes place in a sophisticated system that uses a cloud of rubidium atoms packed closely together in gaseous form to maximize the likelihood of interaction with photons entering the samples. Two separate laser beams excite the rubidium atoms, which are held in a cigar-shaped magneto-optical trap about six millimeters long. The setup creates a four-wave mixing process that changes the wavelength of photons entering it.

"One photon of infrared light going in becomes one photon of telecom light going out," said Alex Kuzmich, an associate professor in the Georgia Tech School of Physics and another of the Nature Physics paper's co-authors. "To preserve the quantum entanglement, our conversion is done at very high efficiency and with low noise."

By changing the shape, size and density of the rubidium cloud, the researchers have been able to boost efficiency as high as 65 percent. "We learned that the efficiency of the system scales up rather quickly with the size of the trap and the number of atoms," Kuzmich said. "We spent a lot of time to make a really dense optical sample. That dramatically improved the efficiency and was a big factor in making this work."

The four-wave mixing process does not add noise to the signal, which allows the system to maintain the information encoded onto photons by the quantum memory. "There are multiple parameters that affect this process, and we had to work hard to find the optimal set," noted Alexander Radnaev, another co-author of the Nature Physics paper.

Once the photons are converted to telecom wavelengths, they move through optical fiber – and loop back into the magneto-optical trap. They are then converted back to infrared wavelengths for testing to verify that the entanglement has been maintained. That second conversion turns the rubidium cloud into a photon detector that is both efficient and low in noise, Kuzmich said.

Quantum memory is created when laser light is directed into a cloud of rubidium atoms confined in an optical lattice. The energy excites the atoms, and the photons scattered from the atoms carry information about that excitation. In the new Georgia Tech system, these photons carrying quantum information are then fed into the wavelength conversion system.

The research team took two different approaches to extending the quantum memory lifetime, both of which sought to mix the two levels of atoms involved in encoding the quantum information. One approach, described in the Nature Physics paper, used an optical lattice and a two-photon process. The second approach, described in the Physical Review Letters submission, used a magnetic field approach pioneered by researchers at the National Institute of Standards and Technology.

The general purpose of quantum networking is to distribute entangled qubits – two correlated data bits that are either "0" or "1" – over long distances. The qubits would travel as photons across existing optical networks that are part of the existing global telecommunications system.

Because of loss in the optical fiber that makes up these networks, repeaters must be installed at regular intervals to boost the signals. For carrying qubits, these repeaters will need quantum memory to receive the photonic signal, store it briefly, and then produce another signal that will carry the data to the next node, and on to its final destination.

"This is another significant step toward improving quantum information systems based on neutral atoms," Kuzmich said. "For quantum repeaters, most of the basic steps have now been made, but achieving the final benchmarks required for an operating system will require intensive optical engineering efforts."

In addition to those already mentioned, the research team also included Y.O. Dudin, R. Zhao, H.H. Jen, J.Z. Blumoff and S.D. Jenkins.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht MSU astronomers discovered supermassive black hole in an ultracompact dwarf galaxy
14.08.2018 | Lomonosov Moscow State University

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>