Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

21.03.2018

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will re-enter the Earth's atmosphere. With dimensions of approx. 10.4 m x 3.4 m and a weight of 8.5 tons, it can be assumed that at least parts of the space station will reach the Earth's surface.


The space observation radar TIRA of Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR in Wachtberg near Bonn in Germany.

Fraunhofer FHR


Radar image of Tiangong-1 taken at an orbital height of approx. 270 km above the Earth's surface. The main body and the solar panels of the space station are clearly visible.

Fraunhofer FHR

Only a few sensors worldwide are capable of measuring and imaging space objects such as Tiangong-1 with sufficient precision to acquire high quality data for re-entry forecasts. Here, Fraunhofer Institute for High Frequency Physics and Radar Techniques uses the highly sensitive TIRA system with its 34 m parabolic antenna.

TIRA combines a ku-band imaging radar with an l-band tracking radar. In contrast to optical systems, radar systems such as TIRA offer decisive advantages: complete independence of local weather conditions, full operational capacity during the day or at night as well as a resolution that is independent of the distance of the object. TIRA is capable of imaging space objects with high geometric and radiometric resolution and can also measure their orbital path with the highest precision.

By precisely determining the orbital data of Tiangong-1 until it re-enters at the end of March/beginning of April 2018, FHR offers the German Space Situational Awareness Center valuable support in forecasting the time and place of re-entry. Regular checks are also carried out to establish whether or not Tiangong-1 is still fully intact.

Moreover, the European Space Agency ESA/ESOC in Darmstadt has commissioned Fraunhofer FHR to determine and investigate the natural rotation of Tiangong-1. This rotation greatly influences the flight characteristics of the space station and therefore also influences the time of impact.

Due to the low orbital inclination, Tiangong-1 will re-enter the Earth's atmosphere somewhere between 43°N and 43°S and therefore does not pose a danger for Germany. A more accurate point of impact can only be estimated a few days previous to the actual event as the braking effect of the atmosphere is influenced by a number of factors.

These include the natural rotation speed, the manner in which Tiangong-1 breaks up into several parts, the time of the break-up and the actual weather conditions in space. With TIRA, Fraunhofer FHR supports the Space Situational Awareness Center and the ESA/ESOC with analyses and data and therefore contributes to the improvement of the re-entry forecast.

In its role as one of the leading European institutes, Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR in Wachtberg/Germany conducts extensive research in the area of high frequency and radar techniques. The institute's large-scale space observation radar TIRA possesses capabilities that are unique throughout Europe. The TIRA system primarily serves as a central experimental facility for the development, investigation and demonstration of radar techniques and algorithms for the detection and reconnaissance of Earth-orbiting objects – from active satellites to "space debris".

Dipl.-Volksw. Jens Fiege
Head of internal and external communication

Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR
Fraunhoferstraße 20 | 53343 Wachtberg | Germany
Phone +49 (0)151 613 653 67 | Fax +49 (0)228 9435-627
mailto:jens.fiege@fhr.fraunhofer.de
http://www.fhr.fraunhofer.de
http://twitter.com/Fraunhofer_FHRe

Weitere Informationen:

https://www.fhr.fraunhofer.de/tiangong-images For more images and the press release

Jens Fiege | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>