Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Nabs Doubly Magic Tin Isotope, a North American First

11.12.2008
With help from newly developed equipment designed and built at Michigan State University, MSU researchers have been able to make first-of-its-kind measurements of several rare nuclei, one of which has been termed a “holy grail” of experimental nuclear physics.

The discoveries, made at MSU’s National Superconducting Cyclotron Laboratory using an isotope purification device, will help to refine theoretical models about how elements are created in the cosmos. Until now, this was beyond the technical reach of nearly all of the world's nuclear science facilities.

To be published December 12 in Physical Review Letters, the paper details how the researchers were able to measure the nuclei of tin, cadmium and indium.

"Tin-100, in particular, has been sort of a holy grail of experimental nuclear physics," said NSCL senior physicist Daniel Bazin of one of the isotopes, with 50 protons and 50 neutrons, described in the paper.

Within nuclear science, 50 is considered "magic" because it's one of a handful of numbers associated with extra stability. The other magic numbers are 2, 8, 20, 28, 82 and 126.

It takes a magic number of protons or neutrons to fill the nested energetic shells that form the nucleus like stacking Russian matryoshka dolls. To understand the concept, consider that each carved doll similarly has a magic number of marbles that precisely and completely fills the hollow interior. And just as a doll full of marbles neatly packed together is probably sturdier than one that's only half or a quarter full, so too is a closed-shell nucleus more stable than its counterparts.

Tin-100 is one of the few “doubly magic” nuclei with magic numbers of both protons and neutrons. Such nuclei are generally far more stable than other particles, especially at the fleeting, shape-shifting edge of nuclear existence. Because of this stability, doubly magic nuclei serve as useful semi-permanent signposts to rare isotope researchers who troll the unexplored terrain of the nuclear landscape seeking to answer basic questions about the structure of nuclear matter and processes that create chemical elements inside stars.

The new experimental device, the radio frequency fragment separator, provides at least a hundredfold boost to NSCL's ability to filter out the few exotic isotopes from the vast sea of other particles produced by its coupled superconducting cyclotrons and downstream magnets. Funding for the equipment was provided by the National Science Foundation.

This newfound filtering ability resulted in the first production and measurement in North America of tin-100, which has been eagerly pursued by experimentalists since at least the mid-1990s. GSI in Germany and GANIL in France are the only other nuclear science facilities in the world to have successfully produced and studied the rare, proton-rich isotope of tin, an element extensively used for thousands of years in everything from ancient spears and knives to cars and modern electronics.

In their paper, a draft version of which is available online on the arxiv.org preprint server (http://arxiv.org/abs/0810.3597), Bazin and his collaborators also report the measurement of half-lives of the cadmium-96 (48 protons and 48 neutrons) and indium-98 (49 protons and 49 neutrons) isotopes.

The announcement of the observation of the three rare isotopes builds on recent NSCL success in creating nuclear matter that otherwise only exists in extreme environments in space, such as exploding stars. In fall 2007, the laboratory reported the discovery of three neutron-rich isotopes of magnesium and aluminum in the journal Nature, a finding that received considerable media attention in the science and mainstream press.

The laboratory is currently undertaking a major MSU-funded upgrade, the centerpiece of which is a new low-energy reaccelerator that will be used to conduct astrophysical research. When this upgrade is completed in summer 2010, NSCL will be only facility in the world capable of offering experimentalists the chance to conduct research with fast, stopped and reaccelerated beams of rare isotopes.

A world leader in rare isotope research and nuclear science education, NSCL is a user facility serving 700 researchers in 32 countries.

Geoff Koch | Newswise Science News
Further information:
http://www.nscl.msu.edu

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>