Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

James Webb Space Telescope Testing to Find Infrared Light for Christmas

10.12.2007
A model of the James Webb Space Telescope's Mid-InfraRed Instrument will be tested before Christmas at the Rutherford Appleton Laboratory in Oxfordshire, England to ensure the final instrument can see infrared light.

Observing the universe in the infrared light portion of the spectrum is important because many objects scientists want to observe in space are far too cold to radiate at shorter wavelengths that can be seen as visible light, but they radiate strongly in infrared light.

The Mid-InfraRed Instrument (MIRI) is one of four sophisticated instruments onboard the Webb telescope which will study the early universe and properties of materials forming around new born stars in unprecedented detail. It will also be able to image directly massive planets orbiting other stars.

Speaking at the 3rd Appleton Space Conference on Dec. 6, European Consortium Lead for MIRI, Dr. Gillian Wright from the U.K. Astronomy Technology Centre (ATC) in Edinburgh said, "It is extremely exciting, after working on the project since 1998, to begin to test a complete instrument. This will provide scientists with real data which they can use to understand the best ways of making discoveries with the instrument."

MIRI's development is an effort between NASA and the European Space Agency (ESA). NASA's Jet Propulsion Laboratory in Pasadena (JPL), Calif, leads the NASA effort and is responsible for the development of MIRI's detectors, its cryocooler, and flight software.

MIRI has already undergone alignment checks with a piece of test equipment simulating the Integrated Science Instrument Module, the part of the spacecraft where the MIRI will be attached. This test equipment was supplied by NASA's Goddard Space Flight Center, Greenbelt, Md., who is leading the development of the Webb observatory.

MIRI is the first of the Webb telescope instruments to reach this phase of cryogenic performance testing and marks a significant milestone for this international team.

"The testing is being undertaken at the STFC’s Rutherford Appleton Laboratory in Oxfordshire where all MIRI’s subsystems from collaborators in Europe and NASA’s JPL are integrated and tested in full," says Matt Greenhouse, Integrated Science Instrument Module scientist on the Webb Telescope project at NASA Goddard. This involves thermal and electromagnetic calibration and scientific and environmental testing.

Dr. Tanya Lim, who leads the international MIRI testing team explains, "Given the international nature of this project it is essential to bring together both instrument and test equipment components from around the world to ensure that they work together." She adds, "We will also be using the instrument flight software which will need to work with the spacecraft and ground software systems in order to command the instrument, simulate telemetry to the ground and generate images from the test environment."

The MIRI testing team are working around the clock until the completion of the first tests just before Christmas. Paul Eccleston, MIRI Assembly, Integration and Test Lead adds, "MIRI is the largest individual flight instrument that has been built at RAL, and has presented unusual challenges particularly with regard to cooling and thermal control. The instrument will operate at temperatures much lower than the rest of the spacecraft. As a result, the first two weeks of testing involved cooling the instrument down to its operational temperature of -267ºC, only 6.2K above absolute zero."

During spring 2008, further testing will take place using the MIRI Telescope Simulator -- a special facility being built in Spain. This simulator is unique to MIRI and will be able to simulate the stars that will be seen.

The James Webb Space Telescope is a 21st century space observatory that will peer back more than 13 billion years in time to understand the formation of galaxies, stars and planets and the evolution of our own solar system. It is expected to launch in 2013. The telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>