Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find stellar cradle where planets form

03.12.2007
Astronomers at the University of Illinois have found the first clear evidence for a cradle in space where planets and moons form. The cradle, revealed in photographs taken with NASA’s Spitzer Space Telescope, consists of a flattened envelope of gas and dust surrounding a young protostar.

“We are seeing this object in the early stages of stellar birth,” said U. of I. astronomy professor Leslie Looney, the lead author of a paper accepted for publication in Astrophysical Journal Letters. “Eventually, the protostar will form into a star much like our sun, and the disk will form into planets and moons.”

Located about 800 light-years away in the constellation Cepheus, the object is obscured by dust and therefore invisible to the eye. However, the Spitzer Space Telescope’s sensitive infrared camera can penetrate the dust, and reveal the structures within.

The brightest structure consists of an enormous, almost linear flow of shocked molecular hydrogen gas erupting from the protostar’s two magnetic poles. These bipolar jets are so long, light would take about 1 1/2 years to travel from one end to the other.

In star-formation theory, a cloud of gas and dust collapses to form a star and its planets. As the cloud collapses, it begins to rotate faster and faster, like a pirouetting ice skater pulling in her arms. The force of the growing magnetic field ejects some of the gas and dust along the magnetic axis, forming the bipolar jets seen in the photograph.

“If material was not shed in this fashion, the protostar’s spin would speed up so fast it would break apart,” Looney said.

The planet-forming region is perpendicular to, and roughly centered on the polar jets. There, seen in silhouette against a bright background of galactic infrared emission, is the flattened disk of a circumstellar envelope.

Theorized, but never before seen, the flattened disk is an expected outcome for cloud-collapse theories that include magnetic fields or rotation.

“Some theories had predicted that envelopes flatten as they collapse onto their stars and surrounding planet-forming disks,” Looney said, “but we hadn’t seen any strong evidence of this until now.”

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht The art of making tiny holes
04.08.2020 | Vienna University of Technology

nachricht Early Mars was covered in ice sheets, not flowing rivers
04.08.2020 | University of British Columbia

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

Diverse amyloid structures and dynamics revealed by high-speed atomic force microscopy

04.08.2020 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>