Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to make the brightest supernova ever: Explode, collapse, repeat

19.11.2007
A supernova observed last year was so bright--about 100 times as luminous as a typical supernova--that it challenged the theoretical understanding of what causes supernovae.

But Stan Woosley, professor of astronomy and astrophysics at the University of California, Santa Cruz, had an idea that he thought could account for it--an extremely massive star that undergoes repeated explosions. When Woosley and two colleages worked out the detailed calculations for their model, the results matched the observations of the supernova known as SN 2006gy, the brightest ever recorded.

The researchers describe the model in a paper to be published in the November 15 issue of the journal Nature. Woosley's coauthors are Sergei Blinnikov, a visiting researcher at UCSC from the Institute of Theoretical and Experimental Physics in Moscow, and Alexander Heger of Los Alamos National Laboratory.

"This was a stupendously bright supernova, and we think we have the leading model to explain it. It's a new mechanism for making a supernova, and for doing it again and again in the same star," Woosley said. "We usually think of a supernova as the death of a star, but in this case the same star can blow up half a dozen times."

The first explosion throws off the star's outer shell and produces a not-very-bright supernova-like display. The second explosion puts another supernova's worth of energy into a second shell, which expands at high velocity until it collides with the first shell, producing an extraordinarily brilliant display.

"The two shells collide out at a distance such that the full kinetic energy is converted into light, so it is up to 100 times more luminous than an ordinary supernova," Woosley said. "Usually a supernova only converts 1 percent of its kinetic energy into light, because it has to expand so much before the light can escape."

This mechanism requires an extremely massive star, 90 to 130 times the mass of the Sun, he said. As a star this big nears the end of its life, the temperature in the core gets so hot that some of the energy from gamma-ray radiation converts into pairs of electrons and their anti-matter counterparts, positrons. The result is a phenomenon called "pair instability," in which conversion of radiation into electron-positron pairs causes the radiation pressure to drop, and the star begins to contract rapidly.

"As the core contracts it goes deeper into instability until it collapses and begins to burn fuel explosively. The star then expands violently, but not enough to disrupt the whole star," Woosley said. "For stars between 90 and 130 solar masses, you get pulses. It hits this instability, violently expands, then radiates and contracts until it gets hotter and hits the instability again. It keeps going until it loses enough mass to be stable again."

Stars in this size range are very rare, especially in our own galaxy. But they may have been more common in the early universe. "Until recently, we would have said such stars don't exist. But any mechanism that could explain this event requires a very large mass," Woosley said.

Other researchers had suggested pair instability as a possible mechanism for some supernovae, but the idea of repeated explosions--called "pulsational pair instability"--is new. According to Woosley, the new mechanism can yield a wide variety of explosions.

"You could have anywhere from two to six explosions, and they could be weak or strong," he said. "A lot of variety is possible, and it gets even more complicated because what's left behind at the end is still about 40 solar masses, and it continues to evolve and eventually makes an iron core and collapses, so you can end up with a gamma-ray burst. The possibilities are very exciting."

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun
18.04.2019 | University of Warwick

nachricht In vivo super-resolution photoacoustic computed tomography by localization of single dyed droplets
18.04.2019 | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>