Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young’s experiment in a hydrogen molecule

16.11.2007
According to the authors the research could prove to be of great importance for the future development of quantum computation. The experiment illustrates the transition between the quantum and the macroscopic worlds. Conclusions appear in the latest issue of Science.

An international investigation involving the participation of the Consejo Superior de Investigaciones Científicas (CSIC) has reproduced the experiment of Thomas Young in a molecule of hydrogen, the smallest molecular system that exists. In 1803 the English scientist tested a pattern of interferences in light from a distant source, on passing through a “double slit” and thus being refracted.

This finding confirmed the theory that light had wave motion properties. The authors of this current research, which appears in the latest issue of the journal Science, uses electrons instead of light and the nuclei of the hydrogen molecule as emitting slits.

CSIC researcher Ricardo Díez, Vicedirector of the Centre for Materials Physics (a mixed body of the CSIC and the University of the Basque Country in Donostia-San Sebastián and co-author of the article, explains their experiment: “These interference patterns are the same as those produced, on a large scale, when sunlight passes through Persian blinds, throwing shadow patterns and, as it were, games, on the walls. This phenomenon is due to the fact that (light) particles, as with electrons, can also have wave motion behaviour”.

At much smaller sizes, atomic planes can create interferences in the transmission of X rays, thus providing information about the internal structure of materials. This is the fundamental basis of the experimental techniques such as X ray diffraction, thanks to which the DNA double helix structure was discovered. Ricardo Díez explains, “The Laws that predict, for example, the trajectory of a car at a certain speed are not those that govern the behaviour of atomic-sized particles. On a nanometric scale sizes are measured in units a thousand million times smaller than a metre, and the behaviour of objects at this scale can prove to be surprising, almost magical even!”

The experiment

The researchers reproduced Young’s experiment in the smallest system existing - a molecule of hydrogen -, which consists of two protons and two electrons. The research team used light generated by the large synchrotron accelerator at the Lawrence Berkeley National Laboratory (USA), to extract the two electrons from the molecule of hydrogen. The two protons carry out the role of the two electron-emitting apertures, separated by an extremely small distance – ten thousand millionths of a metre. On its journey to the detector, where they are collected, each one of the electrons shows an interference pattern that suggests wave nature rather than particle motion, and as if emission had taken place from the two points at the same time.

The interference pattern of each one of the two electrons extracted from the molecule is conditioned by the presence and the velocity of the other: the greater the difference in their speeds, the less the interaction between them and the more visible the interference patterns. Under these conditions, the system is more of a quantum nature. “The analysis of the patterns as a function of velocity enables the investigation of the subtle mechanisms of the transition between classical physics and quantum physics. It is necessary to understand the quantum relationship between a small number of electrons, such as those of hydrogen, as it is the basis of concepts as sophisticated as quantum cryptography or of the future development of quantum computation”, concluded the CSIC researcher.

The study was led by University of Frankfurt researcher Reinhard Dörner and involved, moreover, the participation of German North American and Russian scientists.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1514&hizk=I

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>