Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TAU Scientists Help Discover the Most Massive Stellar Black Hole Ever Found

13.11.2007
Sixteen times the mass of our sun, the discovery is expected to serve as a test-bed for studying astrophysics

An international team, including astronomers from Tel Aviv University, has uncovered the most massive stellar black hole found to date in a binary system.

Published in the prestigious journal Nature this week, the research was conducted by an international team including Professor Tsevi Mazeh, who is the director of the Sackler Institute of Astronomy at Tel Aviv University and holds the Oren Family Chair of Experimental Physics, and his Ph.D. student Avi Shporer.

The newly-discovered black hole is about 16 times the mass of our sun and located three million light-years away in a distant galaxy called Messier 33. The finding is unique because the black hole, named M33 X-7, is associated with an unusually large companion star (its binary pair), with a mass about 70 times the mass of our sun. The two objects move one around the other in space once every 3.5 days in an everlasting dance.

A stellar black hole is formed from the collapse of the core of a massive star at the end of its life. The collapse creates an intense gravitational force, where not even rays of light can escape its gravitational pull, rendering the phenomenon invisible. Matter transferred from the companion star into the black hole falls into the hole’s gravitational attraction and emits X-ray radiation that the astronomers have detected by using special satellites.

"Giant telescopes and satellites make it possible for us to discover in space systems that seem to come from a science-fiction film," says Prof. Mazeh. "We are able to study black holes whose existence we were able to imagine only thanks to Einstein's General Theory of Relativity."

This new discovery raises all sorts of questions about how massive black holes are formed. Prof. Mazeh says that these questions illustrate the enormous scale of the universe and the smallness of the Earth within it. "I hope these discoveries will lead scientists and even human society to a degree of modesty," he noted.

The scientific community has known about black holes orbiting companion stars for 40 years. "This discovery raises doubts about theories of how black holes, like this one, are created," said Prof. Jerome Orosz from San Diego State University, the first contributor of the article. Prof. Orosz led the international teams that analyzed data collected by the Chandra X-ray satellite and the Gemini telescope in Hawaii.

Concludes Prof. Mazeh, "Astronomical measurements allow us to peek into the vastness of space and discover epic events incomparable with anything which takes place on earth."

George Hunka | EurekAlert!
Further information:
http://www.tau.ac.il
http://www.aftau.org

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>