Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smile, protons, you're on camera

13.11.2007
Radioactivity, discovered more than 100 years ago and studied by physicists ever since, would seem to be a relatively closed subject in science. However, since the 1960s, the pursuit of at least one open question about how nuclei spontaneously eject various particles has continued to nag experimentalists, largely because of an inability to make precise measurements of fleeting, exotic nuclei.

In a paper published this week in Physical Review Letters, an international collaboration of researchers, led by Marek Pfutzner, a physicist from Warsaw University in Poland, takes several steps toward an answer. The scientists describe a first-ever success in peering closely at radioactive decay of a rare iron isotope at the ragged edge of the known nuclear map. The tools used to achieve this result include a novel combination of advanced physics equipment and imaging technology that is found in most off-the-shelf digital cameras.

"We have proved in a direct and clear way that this extremely neutron-deficient nucleus disintegrates by the simultaneous emission of two protons," write the authors.

Pfutzner and his collaborators set out to better understand an exotic form of radioactivity -- two-proton emissions from iron-45, a nucleus with 26 protons and 19 neutrons. The stable form of iron that is most abundant on Earth has 26 protons and 30 neutrons. One possibility was that the iron-45 isotope might occasionally release an energetically linked two-proton pair, known as a diproton. Other possibilities were that the protons, whether emitted in quick succession or simultaneously, were unlinked.

The research was performed at Michigan State University's National Superconducting Cyclotron Laboratory (NSCL), but the key device was a detector built by Pfutzner and his Warsaw University colleagues. Though nicknamed "the cannon" because of its vague resemblance to some sort of space age military device, the detector didn't shoot anything but rather was the target for the beam of rare isotopes produced at the NSCL Coupled Cyclotron Facility.

The detector included a front-end gas chamber that accepted and then slowed rare isotopes traveling at half the speed of light. The back-end imaging system, built around a high-end digital camera with standard charge-coupled device, or CCD, technology, recorded ghostly images of trajectories of emitted protons from the decaying iron-45 nuclei shot into the cannon's mouth.

Analysis of these images ruled out the theorized diproton emission and indicated that the observed correlations between emitted protons were best described by a form of nuclear transformation known as three-body decay. A theory of this process had previously been described by Leonid Grigorenko, a physicist at the Joint Institute for Nuclear Research in Dubna, Russia and a coauthor of the paper.

"There is amazing agreement between the experiment and Grigorenko's theory, which takes into account the complex interplay between emitted pairs of protons and the daughter nucleus," said Robert Grzywacz, a physicist at the University of Tennessee and Oak Ridge National Laboratory and a coauthor of the paper.

Besides shedding light on a novel form of radioactive decay, the technique also could lead to additional discoveries about fleeting, rare isotopes studied at accelerator facilities such as NSCL and Oak Ridge National Laboratory. These isotopes may hold the key to understanding processes inside neutron stars and determining the limits of nuclear existence.

The experiment itself also harkens back to the early days of experimental nuclear physics in which visual information served as the raw data. Before the days of cameras, this information was usually captured by scientists hunched over a microscope counting, for example, tiny flashes as alpha particles struck a zinc sulfide screen under the lens.

"It's perhaps the first time in modern nuclear physics that fundamentally new information about radioactive decay was captured in a picture taken by a digital camera," said Andreas Stolz, NSCL assistant professor and a coauthor on the paper. "Usually, in nuclear physics experiments you have digitized data and several channels of information from electronics equipment, but never images."

Geoff Koch | EurekAlert!
Further information:
http://www.phys.utk.edu/expnuclear/2p_reshigh.html
http://www.msu.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>