Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big bangs spark row

26.04.2002


Cosmologists claim Universe has been forming and reforming for eternity.


New maths spawns new model.



The Universe was not born in one Big Bang, it has been going through cycles of creation and annihilation for eternity, according to a controversial new mathematical model1.

It’s a compelling claim. The new cyclic model removes a major stumbling block common to existing theories of the Universe - namely, that physics can’t explain what came before the Big Bang.


Because the model relies on new mathematics, it is having some teething problems, admit its proposers. Indeed, most cosmologists are treating the hypothesis with interested scepticism. Some are vociferously critical.

Criticism is to be expected, concedes Neil Turok of Cambridge University, UK, who developed the cyclic model with cosmologist Paul Steinhardt of Princeton University in New Jersey. "We’re taking on some very fundamental issues here," says Turok.

Strings attached

Steinhardt and Turok draw on the emerging science of string theory. This mathematical idea uses up to ten dimensions - instead of the usual four - to explain the weird behaviour of tiny things in physics called fundamental particles.

When applied to big things like cosmology, string theory invokes weird mathematical entities called membranes - branes for short. In the cyclic model there are two branes at any one time, one containing our Universe, the other a parallel Universe that is the mirror image of our own.

The researchers suggest that these branes regularly collide, as they did 15 billion years ago, resulting in the massive release of energy previously ascribed to the Big Bang. And just like the Big Bang, "this collision made all the radiation and matter that fills the Universe," says Turok.

The branes are then flung apart. The Universes on each brane expand outwards over billions of years, as ours is doing today.

According to the model, a fifth dimension that we can’t see or travel through bridges the branes. As each Universe expands, its matter and energy spreads ever thinner and is diluted. When the spring-like fifth dimension overcomes this expansion energy it heaves the branes back together, they collide, and the whole process repeats. "It’s just like reproduction in biology," says Turok.

As well as solving the problem of what came before the Big Bang, the cyclic model could explain numerous other cosmological conundrums, such as dark energy. Our Universe should contain more energy than can be measured, and there are no good theories to explain why. Turok and Steinhardt’s model suggests that this is because energy, in the form of gravity, leaks across the fifth dimension between our Universe and its complementary braneworld.

No braner?

Steinhardt and Turok’s idea sounds appealing, but fellow astrophysicists are not greeting it with open arms. "The community is very, very sceptical," says David Lyth, a cosmologist at the University of Lancaster, UK.

Others are more scathing. "It’s a very bad idea popular only among journalists," says one of the chief critics of the cyclic model, Andrei Linde of Stanford University, California. "It’s an extremely complicated theory and simply does not work," adds Linde, the originator of a rival model of the Universe.

String theory is still in its infancy, and applying it to cosmology stretches it to its limits, explains Cambridge University cosmologist George Efstathiou. "Its connection to fundamental physics is really rather weak," he says, so until string theory matures, models that use it will be flawed and misunderstood. But on the whole, he says, "the cyclic model is a cute idea and some elements of it may survive."

Steinhardt and Turok agree that problems with the mathematics could be their undoing. "There may be disasters waiting for us at higher levels of calculation," says Turok. But, if it does add up, their theory overturns many ideas about the Universe, they say - like time and space being created in a Big Bang.

References

  1. Steinhardt, P. J. & Turok, N. A. Cyclic model of the Universe. Science, published online April 25 (2002).

TOM CLARKE | © Nature News Service

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>