Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bonn Astronomers simulate Life and death in the universe

29.10.2007
Stars always evolve in the universe in large groups, known as clusters. Astronomers distinguish these formations by their age and size. The question of how star clusters are created from interstellar gas clouds and why they then develop in different ways has now been answered by researchers at the Argelander Institute for Astronomy at the University of Bonn with the aid of computer simulations.

The scientists have solved – at least at a theoretical level – one of the oldest astronomical puzzles, namely the question of whether star clusters differ in their internal structure. The findings have now been published in the science journal "Monthly Notices of the Royal Astronomical Society" (MNRAS 380, 1589).

Astronomical observations have shown that all stars are formed in star clusters. Astronomers distinguish between, on the one hand, small and, by astronomical standards, young star clusters ranging in number from several hundred to several thousand stars and, on the other, large high-density globular star clusters consisting of as many as ten million tightly packed stars which are as old as the universe. No one knows how many star clusters there might be of each type, because scientists have not previously managed to fully compute the physical processes behind their genesis.

Stars and star clusters are formed as interstellar gas clouds collapse. Within these increasingly dense clouds, individual "lumps" emerge which, under their own gravitational pull, draw ever closer together and finally become stars. Similar to our "solar wind", the stars send out strong streams of charged particles. These "winds" literally sweep out the remaining gas from the cloud. What remains is a cluster that gradually disintegrates until its component stars can move freely in the interstellar space of the Milky Way.

Scientists believe that our own sun arose within a small star cluster which disintegrated in the course of its development. "Otherwise our planetary system would probably have been destroyed by a star moving close by," says Professor Dr. Pavel Kroupa of the Argelander Institute for Astronomy at Bonn University. In order to achieve a better understanding of the birth and death of stellar aggregations Professor Kroupa and Dr. Holger Baumgardt have developed a computer programme that simulates the influence of the gases remaining in a cluster on the paths taken by stars.

Heavy star clusters live longer

The main focus of this research has been on the question of what the initial conditions must look like if a new-born star cluster is to survive for a long time. The Bonn astronomers discovered that clusters below a certain size are very easily destroyed by the radiation of their component stars. Heavy star clusters, on the other hand, enjoy significantly better "survival chances".

For astronomers, another important insight from this work is that both light and heavy star clusters do have the same origins. As Professor Kroupa explains, "It seems that when the universe was born there were not only globular clusters but also countless mini star clusters. A challenge now for astrophysics is to find their remains." The computations in Bonn have paved the way for this search by providing some valuable theoretical pointers.

The Argelander Institute has recently been equipped with five "GRAPE Computers", which operate at speeds 1,000 times higher than normal PCs. They are being deployed not only in research but also for research-related teaching: "Thanks to the GRAPE facilities, our students and junior academics are learning to exploit the power of supercomputers and the software developed specially for them." The Argelander Institute is regarded world-wide as a Mecca for the computation of stellar processes. Despite their enormous calculating capacity, the machines require several weeks to complete the simulation.

Contact:
Dr. Holger Baumgardt, Prof. Dr. Pavel Kroupa
Argelander-Institut für Astronomie (AIfA) der Universität Bonn
Telephone: 0228/73-6790 and -3655
E-mail: pavel@astro.uni-bonn.de

Dr. Holger Baumgardt | alfa
Further information:
http://www.astro.uni-bonn.de

More articles from Physics and Astronomy:

nachricht Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication
16.07.2018 | Chinese Academy of Sciences Headquarters

nachricht Theorists publish highest-precision prediction of muon magnetic anomaly
16.07.2018 | DOE/Brookhaven National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>