Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible cosmic defect may be a window into the early universe

26.10.2007
An unusual cold spot in the oldest radiation in the universe, the cosmic microwave background, may be caused by a cosmic defect created just after the Big Bang, a Spanish and U.K. research team has found.

Although these findings need confirmation with further research, the suggestion may provide cosmologists with a long-sought clue about how the infant universe evolved.

This study will be published online by the journal Science, at the Science Express website, on 25 October, 2007. Science is published by AAAS, the nonprofit science society.

“These findings open up the possibility of looking for cosmic defects, similar to crystal defects, in the fabric of the universe. Although their existence has been proposed by theorists for decades, no defects have been seen. The jury is still out on the cold spot’s origin, but this surprising finding will be testable and may lead to new views of the cosmos in its infancy in years to come,” said Joanne Baker, associate editor at Science.

“Science is honored to be publishing this important research, and it seems fitting that an international collaboration between Spanish and British scientists be presented the same week that Spain is celebrating the importance of scientific achievement, through the Prince of Asturias Awards,” she said.

The research team, led by Marcos Cruz of the Instituto de Fisica de Cantabria, in Santander, Spain, was careful to say that they have not definitively discovered a defect. Rather, they have found evidence in the cosmic microwave background -- the frozen map of the early universe from the time when the first atoms formed and became separate from photons, hundreds of thousands of years after the Big Bang -- that could be explained by the presence of a defect.

Because defects would have formed at extremely high temperatures, at particle energies far in excess of those achievable at laboratory accelerators, their properties would provide physicists with powerful clues as to the fundamental nature of elementary particles and forces.

"It will be very interesting to see whether this tentative observation firms up in coming years. If it does, the implications will be extraordinary. The properties of the defect will provide an absolutely unique window onto the unification of particles and forces," said Neil Turok of the University of Cambridge in Cambridge, United Kingdom, who is a coauthor of the Science study.

Shortly after the Big Bang, the universe began to cool and expand, undergoing a variety of phase transitions -- more exotic versions of the gas-liquid-solid transitions that matter experiences on Earth.

In both the early universe and the average kitchen freezer, when matter changes phase, it does so irregularly. In an ice cube, for example cloudy spots mark defects that formed as the water crystallized.

In the mid-1970's, particle physicists realized that different sorts of defects should also have developed as various particles separated from the infant universe's hot plasma.

One such defect, known as a texture, is “a three-dimensional object like a blob of energy. But within the blob the energy fields making up the texture are twisted up,” according to Turok.

Textures and other defects should be detectable as temperature variations in the cosmic microwave background.

“The cosmic microwave background is the most ancient image we have of the universe and therefore it’s one of the most valuable tools to understand the universe’s origins. If this spot is a texture, it would allow us to discriminate among different theories that have been proposed for how the universe evolved,” said Cruz.

When Turok and his colleagues first described cosmic texture and showed how it might be detected, the cosmic microwave background hadn’t been mapped accurately enough to detect them. But since 2001, the Microwave Anisotropy Probe, also known as WMAP, has provided a detailed survey of the temperature changes across the cosmic microwave background.

The Science study began with Cruz and his colleagues at the Instituto de Física de Cantabria puzzling over an unusual cold spot in the WMAP data and trying to figure out what could have caused it. When the problem defied all explanations other than a defect, they brought their problem to Turok.

The research team then analyzed WMAP data and determined that the cold spot had the properties that would be expected if it had been caused by a cosmic texture.

“Now, here is an example where this exotic theory trumps more mundane ones,” said Baker.

"We're not certain this is a texture by any means. The probability that it's just a random fluctuation is about 1 percent. But what makes this so interesting is that there are a number of follow-up checks which can now be done. So the texture hypothesis is actually very testable," said Turok.

Natasha Pinol | EurekAlert!
Further information:
http://www.aaas.org
http://www.sciencemag.org

More articles from Physics and Astronomy:

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>