Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time to overhaul Newton's theory of gravitation? Galaxy cluster models cast doubt on dark matter

26.10.2007
For almost 75 years, astronomers have believed that the Universe has a large amount of unseen or ‘dark’ matter, thought to make up about five-sixths of the matter in the cosmos.

With the conventional theory of gravitation, based on Newton’s ideas and refined by Einstein 92 years ago, dark matter helps to explain the motion of galaxies, and clusters of galaxies, on the largest scales.

Now two Canadian researchers at the Perimeter Institute for Theoretical Physics suggest that the motion of galaxies in a distant cluster is more easily explained by a Modified Gravity (MOG) theory than by the presence of dark matter. Graduate student Joel Brownstein and his supervisor Professor John Moffat of the University of Waterloo present their results in a paper in the 21 November edition of Monthly Notices of the Royal Astronomical Society.

The two scientists analysed images of the ‘Bullet Cluster’ of galaxies made using the Hubble Space Telescope, Chandra X-ray and Spitzer infrared observatories and the Magellan telescope in Chile. The Bullet Cluster consists of two merging clusters of galaxies and lies at a distance of over 3 billion light years in the direction of the southern constellation of Carina.

This arsenal of instrumentation gave them maps of the 150 million degree hot gas between the galaxies and show the effect of gravitational lensing, where the gravity of an intervening object – here the Bullet Cluster - deflects the path of light emitted by a more distant galaxy.

Previous studies suggested that the Bullet Cluster clearly demonstrates the presence of dark matter. But when Brownstein and Moffat compared the observed gravitational lensing and distribution of gas with that predicted using MOG theory, they found no evidence for this. In other words, it is more natural to explain the appearance of this cluster using a revised theory of gravitation than by including dark matter.

MOG theory emerges from a generalization of relativity that eluded even Einstein, has been developed by Moffat for nearly thirty years and is now yielding astronomical and cosmological results. The theory has been used to successfully explain the movement of stars in over 100 galaxies and the motion of galaxies in more than 100 clusters. MOG theory may also explain the apparent anomalous deceleration of the Pioneer 10 and 11 space probes, launched in the early 1970s and now more than 12000 million km from the Sun.

The two physicists are enthusiastic about their findings. Brownstein comments, ‘Using Modified Gravity (MOG) theory, the ‘normal’ matter in the Bullet Cluster is enough to account for the observed gravitational lensing effect. In time, better observations will lead to higher resolution pictures of the systems we are studying. Continuing the search for and then analysing other merging clusters of galaxies will help us decide whether dark matter or MOG theory offers the best explanation for the large scale structure of the Universe.’

Professor Moffat adds, ‘If the multi-billion dollar laboratory experiments now underway succeed in directly detecting dark matter, then I will be happy to see Einsteinian and Newtonian gravity retained. However, if dark matter is not detected and we have to conclude that it does not exist, then Einstein and Newtonian gravity must be modified to fit the extensive amount of astronomical and cosmological data, such as the bullet cluster, that cannot otherwise be explained.’

Robert Massey | alfa
Further information:
http://www.ras.org.uk
http://www.perimeterinstitute.ca/personal/jbrownstein/mog/prediction/index.html

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>