Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroids pile up

12.04.2002


There are more asteroids out there than we thought.
© NASA


New count doubles the rocks in asteroid belt.

There are twice as many asteroids between Mars and Jupiter as previously believed, according to the latest study. But the probability of a stray one colliding with Earth remains negligible.

Edward Tedesco of US research company TerraSystems Inc.and Francois-Xavier Désert of the Astrophysical Laboratory in Grenoble, France, found that there are between 1.1 million and 1.9 million asteroids swarming round the ’main asteroid belt’1.



Astronomers have previously studied individual asteroids, but Tedesco and Désert are among the first to perform a large-scale survey. They used the European Space Agency’s Infrared Space Observatory to observe a small region of the asteroid belt and extrapolated the number of asteroids to estimate the total number.

The study offers a "snapshot of the main belt", says Thomas Mueller, an astronomer at the Max Planck Institute in Munich, Germany. But the possibility of a collision with Earth remains minimal, according to Mueller.

Fears of a possible impact were raised last week2 when scientists forecast that there is a slim chance of a collision in 2880. It will take years before astronomers can discover the precise pathway for each asteroid in the belt, says Mueller, but this should not be a cause for concern. "The majority of all orbits of asteroids are relatively stable over millions of years and will not cross Earth’s orbit," he says.

Asteroids are faint and difficult to pin down with telescopes that detect visible light. Tedesco and Désert overcame this obstacle by measuring the infrared that the asteroids emit. They developed a mathematical model to estimate the entire population of asteroids based on those in a selected area of the belt. "It is a new method to derive an inventory of our Solar System," says Mueller.

Diverting disaster

If stray asteroids do end up on a collision path with Earth they could be deflected by changing the amount of sunlight they reflect, a second study has suggested3. When an unevenly heated body re-radiates heat, it alters the momentum of an object - this is called the Yarkovsky effect. This could be used to deflect an asteroid slightly in its orbit, according to Joseph Spitale, a planetary scientist at the University of Arizona.

But executing this deflection might be easier said than done. Spitale suggests coating the asteroid with a blanket of dirt 1 centimetre deep to change its surface heat conductivity, or using a small amount of explosive to modify the surface. "Their precise implementation is open to debate," he says.

References

  1. Tedesco, E.F. & Désert, F-X.The Infrared Space Observatory Deep Asteroid Search. The Astronomical Journal, 123, 2070 - 2082, (2002).
  2. Giorgini, J.D. et al. Asteroid 1950 DA’s encounter with Earth in 2880: physical limits of collision probability prediction. Science, 296, 132 - 136, (2002).
    Spitale, J.N. Asteroid hazard mitigation using the Yarkovsky effect. Science, 296, 77, (2002).


MEERA LOUIS | © Nature News Service

More articles from Physics and Astronomy:

nachricht Non-volatile control of magnetic anisotropy through change of electric polarization
12.11.2019 | Kanazawa University

nachricht Thorium superconductivity: Scientists discover new high-temperature superconductor
11.11.2019 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

Magnets for the second dimension

12.11.2019 | Machine Engineering

New efficiency world record for organic solar modules

12.11.2019 | Power and Electrical Engineering

Non-volatile control of magnetic anisotropy through change of electric polarization

12.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>