Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopping Atoms

04.10.2007
With atoms and molecules in a gas moving at thousands of kilometres per hour, physicists have long sought a way to slow them down to a few kilometres per hour to trap them.

A paper, published today in the Institute of Physics’ New Journal of Physics, demonstrates how a group of physicists from The University of Texas at Austin, US, have found a way to slow down, stop and explore a much wider range of atoms than ever before.

Inspired by the coilgun that was developed by the University’s Center for Electromechanics, the group has developed an "atomic coilgun" that slows and gradually stops atoms with a sequence of pulsed magnetic fields.

Dr. Mark Raizen and his colleagues in Texas ultimately plan on using the gun to trap atomic hydrogen, which he said has been the Rosetta Stone of physics for many years and is the simplest and most abundant atom in the periodic table.

Work on slowing and stopping atoms has been at the forefront of advancement in physics for some time. In 1997, there were three joint-winners for the Nobel Prize in Physics for their combined contribution to laser cooling - a method using laser light to cool gases and keep atoms floating or captured in "atom traps".

These important advances had limited use because they only applied to atoms with 'closed two-level transition', excluding important elements such as hydrogen, iron, nickel and cobalt. In contrast, nearly all elements and a wide range of molecules are affected by magnetic forces, or are paramagnetic, which means that this latest research has much wider applicability.

Professor Raizen said, "Of particular importance are the doors being opened for our understanding of hydrogen. Precision spectroscopy of hydrogen's isotopes, deuterium and tritium, continues to be of great interest to both atomic and nuclear physics. Further study of tritium, as the simplest radioactive element, also serves as an ideal system for the study of Beta decay. "

Having successfully designed and used an 18-coil device to slow a supersonic beam of metastable neon atoms, the team is now developing a 64-stage device to further slow and stop atoms.

Joseph Winters | alfa
Further information:
http://www.iop.org/EJ/abstract/1367-2630/9/10/358

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>