Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collaboration shines possible light on objects 'weirder than black holes'

26.09.2007
Researchers from Duke University and the University of Cambridge think there is a way to determine whether some black holes are not actually black.

Finding such an unmasked form of what physicists term a singularity "would shock the foundation of general relativity," said Arlie Petters, a Duke professor of mathematics and physics who worked with Marcus Werner, Cambridge graduate student in astrophysics, on a report posted online Monday, Sept. 24, for the research journal Physical Review D.

"It would show that nature has surprises even weirder than black holes," Petters added.

Albert Einstein originally theorized that stars bigger than the sun can collapse and compress into singularities, entities so confining and massively dense that the laws of physics break down inside them.

Astronomers have since found indirect evidence for these entities, which are popularly known as black holes because of the "cosmic censorship conjecture." This conjecture is that "realistic" singularities -- meaning those that can be formed in nature -- must always hide within a barrier known as an "event horizon" from which light can never escape. That makes them appear perpetually black to the rest of the universe.

But cosmic censorship is "an open conjecture that is very difficult to prove, and very difficult to disprove," said Petters.

And, despite the general support for the universality of black holes, Kip Thorne and John Preskill, two experts in the cosmology of relativity at the California Institute of Technology, have suggested for more than a decade that naked singularities could exist in certain instances. Now Petters and Werner have devised a way to test for their presence.

Astronomers cannot say for sure whether all black holes are actually black, having never fully penetrated the obscuring outward matter surrounding such objects, Petters said. As their main evidence, scientists can only point to effects that the massive gravitational pull of certain unseen entities exert on surrounding matter. Those effects include emissions of highly energetic radiation, or the extreme orbits of nearby stars.

Petters is an expert in "gravitational lensing," another effect of relativity that permits massive sources of gravity to split light from background astronomical features into multiple images.

In earlier reports in the November, 2005 and February, 2006 issues of Physical Review D, he and Charles Keeton of Rutgers University suggested a way to use gravitational lensing to show whether cosmic censorship can ever be violated.

However, that evaluation was limited to non-spinning singularities that are considered only theoretically possible. The suspected singularities astronomers have found in space so far all appear to be rapidly spinning, sometimes at more than 1,000 times a second.

So Petters and Werner teamed up to see if they could generalize such an application of gravitational lensing to all realistic spinning singularities. Their surprising result was yes, Petters said.

In work supported by the National Science Foundation in the United States and the Science and Technology Facilities Council in the United Kingdom, the pair employed a finding that a black hole could be shed of its event horizon and become a naked singularity if its angular momentum -- an effect of its spin -- is greater than its mass.

That would translate into a spin of a few thousand rotations a second in the case of a black hole weighing about 10 times more than our Sun, said Werner.

In the event that the required conditions were met, Petters' and Werner's calculations show that a naked singularity's massive gravitation would split the light of background stars or galaxies in telltale ways that are potentially detectable by astronomers using existing or soon-to-be instruments.

Those possible ways are outlined by six different equations in their study that connect a singularity's spin to the separations, angular alignments and brightness of the two split images.

"If you ask me whether I believe that naked singularities exist, I will tell you that I'm sitting on the fence," said Petters. "In a sense, I hope they are not there. I would prefer to have covered-up black holes. But I'm still open-minded enough to entertain the 'otherwise' possibility."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht CCNY-Yale researchers make shape shifting cell breakthrough
12.12.2018 | City College of New York

nachricht Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor
11.12.2018 | Science China Press

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>