Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lift-off for Foton microgravity mission

17.09.2007
An unmanned Foton spacecraft, carrying a payload of more than 40 ESA experiments, was successfully launched earlier today. The Soyuz-U launcher lifted off from Baikonur Cosmodrome, Kazakhstan, at 13:00 CEST (11:00 GMT).

Nearly 9 minutes later, the Russian Foton-M3 spacecraft separated from the rocket's upper stage and was inserted into a 300 km orbit that will carry it around the Earth once every 90 minutes. The Foton will spend 12 days in orbit, during which time the onboard experiments will be exposed to microgravity, and in some cases, to the harsh environment of open space, before re-entering the atmosphere and landing on the steppes near the Russian-Kazakh border.

The 400 kg European payload includes experiments that will contribute to advances in many areas of research. The scientific experiments come from a wide range of scientific disciplines, including fluid physics, biology, protein crystal growth, meteoritics, radiation dosimetry and exobiology (life beyond Earth). The technology-related experiments may lead to more efficient oil extraction processes, better semiconductor alloys and more efficient thermal control systems.

"The Foton mission is part of ESA’s programme for Life and Physical Sciences in spaceexplained Josef Winter, Head of ESA's Payload and Microgravity Platform Division.

"The mission provides an important opportunity for European researchers to conduct a wide variety of experiments in microgravity prior to the availability of ESA's ISS module, Columbus. In total, the Foton-M3 mission is carrying 43 scientific and technological payloads supplied by ESA, Germany, Belgium, France, Italy and Canada, as well as a number of Russian experiments."

One of the more unusual European payloads is the ESA/DLR Aquahab experiment, an aquatic habitat that will be used to observe the effects of weightlessness on a single cell organism, Euglena gracilis, and a small cichlid fish.

The Biobox payload consists of two programmable incubators containing five experiments on cell biology. Three of these will study the effects of weightlessness on bone-forming cells and bone-degrading cells. A fourth experiment will study the damaging effects of space radiation on skin tissue, while another aims to understand the effects of weightlessness on connective tissue cells.

Two more incubators are included in Eristo/Osteo, a joint ESA/Canadian Space Agency project. The two sets of identical hardware contain four thermally controlled experiment trays that will be used to test and evaluate the effects of drugs and growth factors on bone cell activity.

The Franco-Belgian TEPLO experiment aims to measure the performance and characteristics of new designs of heat pipe in weightlessness. This kind of technology should help to significantly reduce the mass and complexity of thermal control subsystems used in space.

On the spacecraft's exterior is a multi-user experimental facility called Biopan, which is designed to automatically expose its ten experiments to the harsh environment of space for the duration of the mission. Attached to the Foton's heat shield are the Stone-6 and Lithopanspermia experiments in which pieces of rock containing living organisms will be exposed to the extreme temperatures and pressures experienced during re-entry.

Also on the outside of the Foton, attached to its battery module, is an ambitious experiment known as the second Young Engineers' Satellite (YES2). Led by ESA's Education Office, some 450 students from ESA Member States and beyond have worked with prime contractor Delta-Utec to design and build the 36 kg payload.

On 25 September, as the Foton mission nears its end, YES2 will deploy a 30 km tether, the longest ever flown in space. A small re-entry capsule released from the end of the tether will be used to demonstrate the possibility of returning small payloads to Earth at a fraction of the cost of current methods.

Markus Bauer | alfa
Further information:
http://www.esa.int/esaCP/SEMQDB13J6F_index_0.html

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>