Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cluster and Double Star uncover more on bright aurorae

12.09.2007
Cluster data has helped provide scientists with a new view of magnetospheric processes, challenging existing theories about magnetic substorms that cause aurorae and perturbations in GPS signals.

The onset of magnetic substorms that originate in Earth’s magnetosphere has been explained by two competing models: current disruption and near-earth reconnection. Current beliefs have been challenged using data from ESA’s Cluster satellites, and CNSA’s Double Star, a mission with ESA participation. A study published on 20 January 2007 in Geophysical Research Letters suggests a third type of substorm onset.

Magnetic substorms often cause bright and colorful aurorae at high latitudes, in places such as Scandinavia or Canada. These aurorae are caused by energetic electrons that spiral down Earth’s magnetic field lines and collide with atmospheric atoms at an altitude of about 100 km. The energetic electrons come from the magnetotail, located on the nightside of Earth where the solar wind stretches Earth’s magnetic field lines into a long tail.

At the centre of the magnetotail is a denser region known as the plasma sheet. Plasma is a gas composed of ions and electrons which is electrically neutral. It is spread over large distances in space and guided by the action of magnetic and electric fields. A substorm induces violent changes in the plasma sheet. It energises ions and electrons and hurls them Earthward. The substorm itself can occur as a series or in isolation.

Apart from producing the beautiful show of light, substorms also excite a large portion of Earth's ionosphere, perturbing the reception of GPS signals and communication between Earth and orbiting satellites. Despite decades of space research, the mechanism causing the onset of substorms remains a mystery.

There are three events associated with the onset of a substorm: auroral brightening, current disruption, and magnetic reconnection.

Auroral brightening is a sudden change of the aurora from light grey to very bright and colorful auroras at an altitude of about 100 km, visible from ground. Current disruption occurs at a height of roughly 60 000 km on the nightside or at a sixth of the distance to the Moon and is associated with turbulent fluctuations in the magnetic field.

Magnetic reconnection is the process whereby magnetic field lines from different magnetic domains collide and reconnect, heating and accelerating plasma. It occurs at around a third of the distance to the Moon or at a height of 120 000 km, in a thin plane close to the magnetic equator of the magnetotail.

The difference between the two existing theories on magnetic substorms is that they differ on the order in which the events take place.

Prof Sergeev (St Petersburg State University, Russia) and colleagues from Europe, the USA and China studied three consecutive substorm onsets, from data collected on board Cluster and Double Star on 26 September 2005. For the first time, data indicate that the current disruption process and magnetic reconnection can coincide in space and time showing, possibly, two sides of the same process.

They also found that in this case, magnetic reconnection occurred closer to the Earth than usual, almost co-located with the current disruption process, between 60 000 and 90 000 km. Related localised auroral brightenings were captured few tens of seconds later by an ultra violet imager onboard the NASA’s IMAGE satellite.

“Cluster’s multipoint measurements and the spatial coverage possible together with Double Star have been instrumental in making these unique observations possible,” commented Sergeev.

In February 2007, NASA launched THEMIS, a five-satellite mission dedicated to the study of the onset of substorms. "With the many scientific satellites in orbit, we have a never-before opportunity to study the global solar-magnetospheric environment and the physical processes involved," said Philippe Escoubet, Cluster and Double Star project scientist of the European Space Agency.

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEM3GYMPQ5F_index_0.html

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>